
Parallel Programming
Divide and Conquer, Cilk-style bounds

Big Picture (Part I)

2

CPU

OS

JVM (Process A)

Core Core Core Core

OS thread OS thread OS thread OS thread

OS scheduler

JVM scheduler

JVM thread

Process B

Memory Space A Memory Space BPhysical
Memory

JVM thread JVM thread JVM threadL03-05

L06

L07

L08-09

L10-L11

L13

…

…

Stack
Registers

PC

Stack
Registers

PC

Stack
Registers

PC

Stack
Registers

PC

Parallel
performance &

algorithms

L12Virtual
threads

Lets look at a code example: sum the elements of a list

3

Sequential Version

The first step of writing a parallel program is writing a sequential
version:

• Helps validate our eventual parallel program is correct
• by comparing results with the simpler, sequential version

• Evaluate the performance of our parallel program
• we write parallel programs to improve performance!

4

Adding Numbers - Sequentially

public static int sum(int[] input){
int sum = 0;
for(int i=0; i<input.length; i++){

sum += input[i];
}
return sum;

}

5

Parallelism idea
Idea: Have 4 threads simultaneously sum 1/4 of the array

• Warning: This is an inferior first approach

• Create 4 thread objects, each given a portion of the work
• Call start() on each thread object to actually run it in parallel
• Wait for threads to finish using join()
• Add together their 4 answers for the final result

+ans

ans0 ans1 ans2 ans3

6

7

Code example: PP-L09-01ArraySum

First attempt, part 1

8

class SumThread extends java.lang.Thread {

int lo; // arguments
int hi;
int[] arr;

int ans = 0; // result

SumThread(int[] a, int l, int h) {
lo=l; hi=h; arr=a;

}

public void run() { //override must have this type
for(int i=lo; i < hi; i++)
ans += arr[i];

}
}

Because we must override a no-arguments/no-result run,
we use fields to communicate across threads

First attempt, continued (wrong)

9

class SumThread extends java.lang.Thread {
int lo, int hi, int[] arr; // arguments
int ans = 0; // result
SumThread(int[] a, int l, int h) { … }
public void run(){ … } // override

}

int sum(int[] arr){ // can be a static method
int len = arr.length;
int ans = 0;
SumThread[] ts = new SumThread[4];
for(int i=0; i < 4; i++) // do parallel computations
ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);

for(int i=0; i < 4; i++) // combine results
ans += ts[i].ans;

return ans;
}

Second attempt (still wrong)

10

int sum(int[] arr){// can be a static method
int len = arr.length;
int ans = 0;
SumThread[] ts = new SumThread[4];
for(int i=0; i < 4; i++){// do parallel computations
ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
ts[i].start(); // start actually runs the thread in parallel

}
for(int i=0; i < 4; i++) // combine results
ans += ts[i].ans;

return ans;
}

class SumThread extends java.lang.Thread {
int lo, int hi, int[] arr; // arguments
int ans = 0; // result
SumThread(int[] a, int l, int h) { … }
public void run(){ … } // override

}

Third attempt (correct in spirit)

11

int sum(int[] arr){// can be a static method
int len = arr.length;
int ans = 0;
SumThread[] ts = new SumThread[4];
for(int i=0; i < 4; i++){// do parallel computations
ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
ts[i].start();

}
for(int i=0; i < 4; i++) { // combine results
ts[i].join(); // wait for helper to finish!
ans += ts[i].ans;

}
return ans;

}

class SumThread extends java.lang.Thread {
int lo, int hi, int[] arr; // arguments
int ans = 0; // result
SumThread(int[] a, int l, int h) { … }
public void run(){ … } // override

}

Discussion

The Thread class defines various methods you could not implement on
your own
• For example: start, which calls run in a new thread

The join method is valuable for coordinating this kind of computation
• Caller blocks until/unless the receiver is done executing (meaning the call to

run finishes)
• Else we would have a race condition on ts[i].ans

This style of parallel programming is called fork/join

Java detail: code has 1 compile error because join may throw
java.lang.InterruptedException
• In basic parallel code, should be fine to catch-and-exit

12

14

Shared memory?

Fork-join programs (thankfully) do not require much focus on
sharing memory among threads

But in languages like Java, there is memory being shared.
In our example:
• lo, hi, arr fields written by “main” thread, read by helper thread
• ans field written by helper thread, read by “main” thread

When using shared memory, you must avoid race conditions (we will
see a more formal definition of data races, later)

15

Issues with this approach (and some workarounds)

Several reasons why this is a poor parallel algorithm

Reason 1: want code to be reusable and efficient across platforms

16

int sum(int[] arr){// can be a static method
int len = arr.length;
int ans = 0;
SumThread[] ts = new SumThread[4];
for(int i=0; i < 4; i++){// do parallel computations
ts[i] = new SumThread(arr,i*len/4,(i+1)*len/4);
ts[i].start();

}
for(int i=0; i < 4; i++) { // combine results
ts[i].join(); // wait for helper to finish
ans += ts[i].ans;

}
return ans;

}

17

Code example: PP-L09-02ParameterizedThreads

Issues with this approach (and some workarounds)

Several reasons why this is a poor parallel algorithm

Reason 1: want code to be reusable and efficient across platforms
• “Forward-portable” as core count grows
• So at the very least, parameterize by the number of threads

18

int sum(int[] arr, int numTs){
int ans = 0;
SumThread[] ts = new SumThread[numTs];
for(int i=0; i < numTs; i++){
ts[i] = new SumThread(arr,(i*arr.length)/numTs,

((i+1)*arr.length)/numTs);
ts[i].start();

}
for(int i=0; i < numTs; i++) {
ts[i].join();
ans += ts[i].ans;

}
return ans;

}

Issues with this approach (and some workarounds)

Reason 2: want to use (only) processors “available to you now”

• Not used by other programs or threads in your program
• Maybe caller is also using parallelism
• Available cores can change even while your threads run

19

// numThreads == numProcessors is bad
// if some are needed for other things
int sum(int[] arr, int numTs){
…

}

Issues with this approach (and some workarounds)

Reason 3: Though unlikely for sum, in general subproblems may
take significantly different amounts of time

Example: Apply method f to every array element, but maybe f is much
slower for some data items, e.g.: is a large integer prime?

If we create 4 threads and all slow data is processed by 1 of them, we won’t
get nearly a 4x speedup
• Example of a load imbalance

20

21

A Better Approach
The counterintuitive (?) solution to all these problems is to use lots of threads,

far more than the number of processors
• But this will require changing our algorithm
• And for constant-factor reasons, abandoning Java’s threads

1. Forward-portable: Lots of helpers each doing a small piece
2. Processors available: Hand out “work chunks” as you go
3. Load imbalance: No problem if slow thread scheduled early enough

• Variation probably small anyway if pieces of work are small

ans0 ans1 ansN

ans

…

22

Divide and Conquer to the Rescue!

This is straightforward to implement using divide-and-conquer
• Parallelism for the recursive calls

23

+ + + + + + + +

+ + + +

+ +
+

Divide and Conquer
Fundamental pattern in parallel programming, also called
recursive splitting

Divide and Conquer:
if cannot divide:
return unitary solution (stop recursion)

divide problem in two
solve first (recursively)
solve second (recursively)
combine solutions
return result

24

Sequential Version: Recursive Sum

public static int do_sum_rec(int[] xs, int l, int h) {
int size = h-l;
if (size == 1) /*check for termination criteria*/

return xs[l];

/* split array in half and call self recursively*/
int mid = size / 2;
int sum1 = do_sum_rec(xs, l, l + mid);
int sum2 = do_sum_rec(xs, l + mid, h);
return sum1 + sum2;

}

25

26

27

Code example: PP-L09-03ParallelRecursiveSum

28

29

Parallel Recursive Sum (with Threads)
public class SumThread extends Thread {
int[] xs;
int h, l;
int result;

public SumThread(int[] xs, int l, int h){
super();
this.xs = xs;
this.h = h;
this.l =l;

}

public void run(){
/*Do computation and write to result*/
return;

}

30

Parallel Recursive Sum (with Threads)
public void run(){

int size = h-l;
if (size == 1) {

result = xs[l];
return;

}
int mid = size / 2;
SumThread t1 = new SumThread(xs, l, l + mid);
SumThread t2 = new SumThread(xs, l + mid, h);

t1.start();
t1.join();

t2.start();
t2.join();

result = t1.result + t2.result;
return;

}

31

Is this OK?

Parallel Recursive Sum (with Threads)
public void run(){

int size = h-l;
if (size == 1) {

result = xs[l];
return;

}
int mid = size / 2;
SumThread t1 = new SumThread(xs, l, l + mid);
SumThread t2 = new SumThread(xs, l + mid, h);

t1.start();
t2.start();

t1.join();
t2.join();

result = t1.result + t2.result;
return;

}

32

Remark: This doesn’t compile because
join() can throw exceptions. In reality
we need a try-catch block here.

Result

33

Java.lang.OutOfMemoryError: unable to create new native thread

One thread per parallel task model

Java threads are actually quite heavyweight

Java threads are mapped to OS threads (in the Oracle and most real-
world implementations)

In general: using one thread per (small tasks) is highly inefficient

34

Divide-and-Conquer works – (really, we’ll get there)

In theory, you can divide down to single elements, do all your result-
combining in parallel and get optimal speedup

In practice, creating all those threads and communicating swamps
the savings, so:

• Use a sequential cutoff, typically around 500-1000
• Eliminates almost all the recursive thread creation (bottom levels of tree)

• Do not create two recursive threads; create one and do the other
“yourself”
• Cuts the number of threads created by another 2x

35

Divide-and-conquer – with manual fixes (Pt. I)
public void run(){

int size = h-l;

if (size < SEQ_CUTOFF)

for (int i=l; i<h; i++)

result += xs[i];

else {
int mid = size / 2;
SumThread t1 = new SumThread(xs, l, l + mid);
SumThread t2 = new SumThread(xs, l + mid, h);
t1.start();
t2.start();
t1.join();
t2.join();
result = t1.result + t2.result;

}

}

36

Half the threads

If a language had built-in support for fork-join parallelism, we would expect this
hand-optimization to be unnecessary

But the library we are using expects you to do it yourself (and the difference is
surprisingly substantial)

Again, no difference in theory
37

// wasteful: don’t
SumThread t1 = …
SumThread t2 = …
t1.start();
t2.start();
t1.join();
t2.join();
result=t1.result+t2.result;

// better: do
// order of next 4 lines
// essential – why?
t1.start();
t2.run();
t1.join();
result=t1.result+t2.result;

38

39

Code example: PP-L09-04RecursiveSumOpt

Divide-and-conquer really works – (but it’s hard work)
The key is divide-and-conquer parallelizes the result-combining

• If you have enough processors, total time is height of the tree: O(log n) (optimal, exponentially
faster than sequential O(n))

• Often relies on operations being associative (like +)

Will write all our parallel algorithms in this style
• But using special libraries engineered for this style

• Takes care of scheduling the computation well

41

+ + + + + + + +

+ + + +

+ +

+

Recap: One thread per task model

Java threads are actually quite heavyweight
Java threads are mapped to OS threads

In general: using one thread per (small tasks) is highly inefficient

42

43

Alternative approach:
schedule tasks on threads

Threads

How many threads would you use?

Tasks

(Thread pool)

44

Java's executor service:
managing asynchronous tasks

Tasks

ExecutorService
Interface

Implementation
e.g.: ThreadPoolExecutor

(Thread pool)

Java's executor service:managing asynchronous tasks

46

ExecutorService

User submits tasks gets back a
Future

.submit(Callable<T> task) → Future<T>

.submit(Runnable task) → Future<?>

47

Note: Callable vs Runnable

Interface Runnable:
→ void run()

Interface Callable<T>:
→ T call()

Does not return result

Returns result

ExecutorService can handle “Runnable” or “Callable” tasks:

48

Code example: PP-L10-01ExecutorHelloTask

Using executor service: Hello World (creating executor,
submitting)

int ntasks = 1000;
ExecutorService exs = Executors.newFixedThreadPool(4);

for (int i=0; i<ntasks; i++) {
HelloTask t = new HelloTask("Hello from task " + i);
exs.submit(t);

}

exs.shutdown(); // initiate shutdown, does not wait, but can’t submit more tasks

49

Using executor service: Hello World (task)
static class HelloTask implements Runnable {

String msg;

public HelloTask(String msg) {
this.msg = msg;

}

public void run() {
long id = Thread.currentThread().getId();
System.out.println(msg + " from thread:" + id);

}
}

50

Using executor service: Hello World (output)
…
Hello from task 803 from thread:8
Hello from task 802 from thread:10
Hello from task 807 from thread:8
Hello from task 806 from thread:9
Hello from task 805 from thread:11
Hello from task 810 from thread:9
Hello from task 809 from thread:8
Hello from task 808 from thread:10
Hello from task 813 from thread:8
Hello from task 812 from thread:9
Hello from task 811 from thread:11
...

51

52

Code example: PP-L10-02RecursiveSumExecutor

Recursive Sum with ExecutorService
public Integer call() throws Exception {
int size = h – l;
if (size == 1)
return xs[l];

int mid = size / 2;
sumRecCall c1 = new sumRecCall(ex, xs, l, l + mid);
sumRecCall c2 = new sumRecCall(ex, xs, l + mid, h);

Future<Integer> f1 = ex.submit(c1);
Future<Integer> f2 = ex.submit(c2);

return f1.get() + f2.get();
}

53

Simple! – But does this work?

If you execute the code, you will observe that it never returns (i.e., the
computation is not completed)

54

Why does this happen?

tasks will end up waiting
eventually we will run out of threads

55

sum(0,100):
t1 = spawn sum(0,50)
t2 = spawn sum(50,100)
t1.wait(); t2.wait()

sum(0,50):
t1 = spawn sum(0,25)
t2 = spawn sum(25,50)
t1.wait(); t2.wait()

sum(50,100):
t1 = spawn sum(50,75)
t2 = spawn sum(75,100)
t1.wait(); t2.wait()

sum(0,25):
t1 = spawn sum(0,12)
t2 = spawn sum(12,25)
t1.wait(); t2.wait()

Adding Numbers ExecutorService: another approach

Problem with the divide and conquer approach is that tasks create other tasks and work
partitioning (splitting up work) is part of the task.

A possible approach is to decouple work partitioning from solving the problem. That is
we split the array into chunks (how many?) and create a task per chunk. Then, we
submit tasks into ExecutorService and combine results (e.g., sum). It can be tricky to do
the initial partitioning of work and final summing in parallel.

57

ans0 ans1 ansN

ans

…

Task Parallel Programming
[Cilk-style]
Tasks:

– execute code
– spawn other tasks
– wait for results from other tasks

A graph is formed based on spawning tasks

B

A C

58

The edges mean that
Task B was created by
Task A and that Task C
was created by Task A

fib() Function

public class Fibonacci {
public static long fib(int n){

if (n < 2)
return n;

long x1 = fib(n-1);
long x2 = fib(n-2);
return x1 + x2;

}
}

59

public class Fibonacci {
public static long fib(int n) {

if (n < 2)
return n;

spawn task for fib(n-1);
spawn task for fib(n-2);
wait for tasks to complete
return addition of task results

}}}

Sequential Version Parallel Version

fib(4) task graph
spawn

join

60

step in same procedure

The task graph is a directed acyclic graph (DAG)

Task parallelism discussion

● Tasks can execute in parallel
– but they don't have to
– assignment of tasks to CPUs/cores is up to the scheduler

● Task graph is dynamic
– unfolds as execution proceeds

● Intuition: wide task graph → more parallelism

62

Task parallelism: performance model

64

● Task graph: tasks become available as
computation progresses

● We can execute the graph on p processors
Scheduler assign tasks to processors

● Tp: execution time on p processors

Task parallelism: performance model
[some reminders]

65

● Tp: execution time on p processors

● T1: work (total amount of work)
– the sum of the time cost of all nodes in graph
– as if we executed graph sequentially (p=1)

● T1 / Tp → speedup

Task parallelism: performance model (Bounds)

● T∞: span, critical path
– Time it takes on infinite processors
– longest path from root to sink

● T1 / T∞ à parallelism
– “wider” is better

● Lower Bounds:
– Tp ≥ T1 / P
– Tp ≥ T∞

66
On this graph, T∞ is 9

Scheduling of task graphs

Scheduler is an algorithm for assigning tasks to
processors

Note that:

Tp depends on scheduler

T1 / P and T∞ are fixed

68

What is T2 for this graph?

That is, we have 2 processors.

T2 will be 5 with
this scheduling
(we have 5 time steps)

1

2 3

4

5

T2 will be 4 with
this scheduling
(we have 4 time steps)

1

2

3

4

13

Work stealing scheduler

First used in MIT’s Cilk, now a standard method

Provably: Tp = T1 / P + O(T∞) Empirically: Tp ≈ T1 / P + T∞

Guideline for parallel programs => ”Scheduling Multithreaded
Computations by Work Stealing”, Blumfoe & Leiserson, MIT

70

a bound on how fast you can get on p processors
with a greedy scheduler: 𝐓𝐩 ≤ 𝐓𝟏 / 𝐏 + 𝐓∞ Theorem [Graham‘68]

Summary

Divide and conquer for parallel programming

Cilk-style task graphs, scheduling and bounds

71

