
Parallel Programming
ForkJoin Framework & Task Parallel Algorithms



This Lecture: Java’s ForkJoin Framework 

We need a new framework that supports Divide and Conquer style 
parallelism

That is, when a task is waiting, it is suspended and other tasks are 
allowed to run!
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Motivation

We said: 
• Adding numbers recursively is straightforward to implement using 

divide-and-conquer
• Parallelism for the recursive calls
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That library, finally

The ForkJoin Framework is designed to meet the needs of divide-
and-conquer fork-join parallelism
• In the Java standard libraries

Lecture will focus on pragmatics/logistics
• Similar libraries available for other languages 

• C/C++: Cilk (inventors), Intel’s Thread Building Blocks
• C#: Task Parallel Library
• …

• Library’s implementation is also fascinating
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Different terms, same basic idea
To use the ForkJoin Framework:
A little standard set-up code (e.g., create a ForkJoinPool)

Don’t subclass Thread Do subclass RecursiveTask<V>
Don’t override run Do override compute
Do not use an ans field Do return a V from compute
Don’t call start Do call fork
Don’t just call join Do call join which returns answer
Don’t call run to hand-optimize  Do call compute to hand-optimize
Don’t have a topmost call to run Do create a pool and call invoke

_
_
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Tasks in Fork/Join Framework
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RecursiveActionRecursiveTask

(returns  value) (does not return value)

ForkJoinTask

.fork()   → create a new task

.join()   → return result when task is done

.invoke() → execute task
(no new task is created)

subclasses need to define a compute() method



Tasks in Fork/Join Framework – Usual Procedure
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t.fork()
…
res = t.join()

t.invoke()

spawn a new task

possibly do other things

wait for task result

execute the task computation
without spawning a task
(in-place)



Recursive sum with ForkJoin (use)

class Globals {

static ForkJoinPool fjPool = new ForkJoinPool();

}  

static long sumArray(int[] array) {
return Globals.fjPool.invoke(new SumForkJoin(array,0,array.length));

}
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ForkJoinPool:
● constructor creates a number of threads equal to the number of available 

processors
● .invoke() submits task and waits until it is completed
● .submit() submits task (receives a Future)

Default # of 
processors
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Code example: PP-L11-01ForkJoinRecursiveSum





Recursive sum with ForkJoin (RecursiveTask Class)
class SumForkJoin extends RecursiveTask<Long> {

int low;
int high;
int[] array;

SumForkJoin(int[] arr, int lo, int hi) {
array = arr;
low = lo;
high = hi;

}

protected Long compute() { /*…*/ }
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Recursive sum with ForkJoin (compute)
protected Long compute() {

if(high - low <= 1) 
return array[high];

else {
int mid = low + (high - low) / 2;
SumForkJoin left  = new SumForkJoin(array, low, mid);
SumForkJoin right = new SumForkJoin(array, mid, high);
left.fork();
right.fork();
return left.join() + right.join();

}
}
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Results

If you try the code you will observe that it performs poorly.

The reasons have to do with the ForkJoin framework 
implementation and how it was retrofitted to Java

– this is not a problem inherent to the model
– in other languages this is not a problem

Situation has improved with Java 8

Performance can still be an issue



Fixes/Work-Around – cont’d
protected Long compute() {

if(high - low <= SEQUENTIAL_THRESHOLD) {
long sum = 0;
for(int i=low; i < high; ++i) 

sum += array[i];
return sum;

} else {
int mid = low + (high - low) / 2;
SumForkJoin left  = new SumForkJoin(array, low, mid);
SumForkJoin right = new SumForkJoin(array, mid, high);
left.fork();
long rightAns = right.compute();
long leftAns = left.join();
return leftAns + rightAns;

}
}
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Make sure each task has ‘enough’ to do!



Getting good results in practice

Sequential threshold
• Library documentation recommends doing approximately  100-5000 basic 

operations in each “piece” of your algorithm

Library needs to “warm up”
• May see slow results before the Java virtual machine re-optimizes the library 

internals 
• Put your computations in a loop to see the “long-term benefit”

Wait until your computer has more processors J
• Seriously, overhead may dominate at 4 processors, but parallel programming is 

likely to become much more important

Beware memory-hierarchy issues 
• E.g. locality.
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Enough Adding-Up Numbers!

Done:
• How to use fork and join to write a parallel algorithm
• Why using divide-and-conquer with lots of small tasks is best
• combines results in parallel

• Some Java and ForkJoin Framework specifics

Now:
• More examples of simple parallel programs
• Arrays & balanced trees support parallelism better than linked lists
• Asymptotic analysis for fork-join parallelism
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What else looks like this?

We saw how summing an array went from O(n) sequential to O(log n) 
parallel 

19
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Anything that can use results from two halves and merge them in 
O(1) time has the same property…



Examples

Maximum or minimum element

Is there an element satisfying some property (e.g., is there a 17)?

Left-most element satisfying some property (e.g., first 17)
• What should the recursive tasks return?
• How should we merge the results?

Counts, for example, number of strings that start with a vowel
• This is just summing with a different base case
• Many problems are!
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Reductions

Computations of this form are called reductions (or reduces?)

Produce single answer from collection via an associative operator
• Examples: max, count, leftmost, rightmost, sum, product, …
• Non-examples: median, subtraction, exponentiation

(Recursive) results don’t have to be single numbers or strings.  They can 
be arrays or objects with multiple fields.
• Example: Histogram of test results is a variant of sum

But some things are inherently sequential
• How we process arr[i] may depend entirely on the result of processing 

arr[i-1]
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Even easier: Maps (Data Parallelism)

A map operates on each element of a collection independently to 
create a new collection of the same size
• No combining results
• For arrays, this is so trivial some hardware has direct support

Canonical example: Vector addition
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int[] vector_add(int[] arr1, int[] arr2){
assert (arr1.length == arr2.length);
result = new int[arr1.length];
FORALL(i=0; i < arr1.length; i++) {
result[i] = arr1[i] + arr2[i];

}
return result;

}
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Code example: PP-L11-02MapsArraySummation



Maps in ForkJoin Framework (compute)
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protected void compute(){
if(hi-lo < SEQUENTIAL_CUTOFF) {

for(int i=lo; i < hi; i++)
res[i] = arr1[i] + arr2[i]; // 2 inputs, 1 output

} else {
int mid = (hi+lo)/2;
VecAdd left = new VecAdd(lo,mid,res,arr1,arr2);
VecAdd right= new VecAdd(mid,hi,res,arr1,arr2);   
left.fork();
right.compute();
left.join();
}

}



Maps in ForkJoin Framework (use)
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class Globals {
static ForkJoinPool fjPool = new ForkJoinPool();

} 

static int[] add(int[] arr1, int[] arr2){
assert (arr1.length == arr2.length);
int[] ans = new int[arr1.length];
Globals.fjPool.invoke(new VecAdd(0,ans.length,ans,arr1,arr2));
return ans;

}











Maps and reductions
Maps and reductions: the “work horses” of parallel programming

• By far the two most important and common patterns

• Learn to recognize when an algorithm can be written in terms of maps 
and reductions

• Use maps and reductions to describe (parallel) algorithms

• Programming them becomes “trivial” with a little practice
• Exactly like sequential for-loops seem second-nature
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Digression:  MapReduce on clusters

You may have heard of Google’s “map/reduce”
• Or the open-source version Hadoop

Idea: Perform maps/reduces on data using many machines
• The system takes care of distributing the data and managing fault tolerance
• You just write code to map one element and reduce elements to a combined 

result

Separates how to do recursive divide-and-conquer from what 
computation to perform
• Old idea in higher-order functional programming transferred to large-scale 

distributed computing
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Linked lists

Can you parallelize maps or reduces over linked lists?
• Example: Increment all elements of a linked list
• Example: Sum all elements of a linked list
• Parallelism still beneficial for expensive per-element operations
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b c d e f

front back

• Once again, data structures matter!
• For parallelism, balanced trees generally better than lists so that we 

can get to all the data exponentially faster O(log n) vs. O(n)
– Trees have the same flexibility as lists compared to arrays





Analyzing algorithms

Like all algorithms, parallel algorithms should be correct and efficient

For our algorithms so far, correctness is “obvious” so we’ll focus on 
efficiency
• Want asymptotic bounds
• Want to analyze the algorithm without regard to a specific number of 

processors
• The key “magic” of the ForkJoin Framework is getting expected run-time 

performance asymptotically optimal for the available number of processors
• So we can analyze algorithms assuming this guarantee
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Work and Span [Recap]

Let TP be the running time if there are P processors available

Two key measures of run-time (recap):

Work: How long it would take 1 processor = T1
• Just “sequentialize” the recursive forking

Span: How long it would take infinity processors = T¥
• The longest dependence-chain
• Example: O(log n) for summing an array 
• Also called “critical path length” or “computational depth”
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The DAG

A program execution using fork and join can be seen as a DAG
• Nodes: Pieces of work 
• Edges: Source must finish before destination starts
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• A fork “ends a node” and makes two outgoing edges
• New thread
• Continuation of current thread

• A join “ends a node” and makes a node with two incoming 
edges
• Task just ended
• Last node of thread joined on



Our simple examples
fork and join are very flexible, but divide-and-conquer maps and 
reductions use them in a very basic way:
• A tree on top of an upside-down tree
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base cases

divide 

combine 
results 



Connecting to performance

Recall: TP = running time if there are P processors available

Work = T1 = sum of run-time of all nodes in the DAG
• That lonely processor does everything
• O(n) for simple maps and reductions

Span = T¥ = sum of run-time of all nodes on the most-expensive path in 
the DAG
• Note: costs are on the nodes not the edges
• Our infinite army can do everything that is ready to be done, but still has to 

wait for earlier results
• O(log n) for simple maps and reductions
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Recap: Definitions
A couple more terms:

Speed-up on P processors: T1 / TP 

If speed-up is P as we vary P, we call it perfect linear speed-up
• Perfect linear speed-up means doubling P halves running time
• Usually our goal; hard to get in practice

Parallelism is the maximum possible speed-up: T1 / T ¥
• At some point, adding processors won’t help
• What that point is depends on the span

Designing parallel algorithms is about decreasing span without 
increasing work too much
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Optimal TP: Thanks ForkJoin library!

So we know T1 and T ¥ but we want TP (e.g., for p=4)

So an asymptotically optimal execution would be:
TP  =  O((T1 / P) + T ¥)

• First term dominates for small P, second for large P

The ForkJoin Framework gives an expected-time guarantee of 
asymptotically optimal! 
• Expected time because it flips coins when scheduling
• How? For an advanced course (few need to know)
• Guarantee requires a few assumptions about your code…
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Division of responsibility

Our job as ForkJoin Framework users:
• Pick a good algorithm, write a program
• When run, program creates a DAG of things to do
• Make all the nodes a small-ish and approximately equal amount of work

The framework-writer’s job:
• Assign work to available processors to avoid idling

• Let framework-user ignore all scheduling issues
• Keep constant factors low
• Give the expected-time optimal guarantee assuming framework-user did 

his/her job
TP  =  O((T1 / P) + T ¥)

44



Examples

TP  =  O((T1 / P) + T ¥)

In the algorithms seen so far (e.g., sum an array):
• T1 = O(n)
• T ¥= O(log n)
• So expect (ignoring overheads): TP  =  O(n/P + log n)

Suppose instead:
• T1 = O(n2)
• T ¥= O(n)
• So expect (ignoring overheads): TP  =  O(n2/P + n)
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Amdahl’s Law (mostly bad news)

So far: analyze parallel programs in terms of work and span

In practice, typically have parts of programs that parallelize well…

• Such as maps/reductions over arrays and trees 

…and parts that don’t parallelize at all

• Such as reading a linked list, getting input, doing computations where 
each needs the previous step, etc.
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All is not lost

Amdahl’s Law is a bummer!
• Unparallelized parts become a bottleneck very quickly
• But it doesn’t mean additional processors are worthless

We can find new parallel algorithms
• Some things that seem sequential are actually parallelizable

We can change the problem or do new things
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The prefix-sum problem

Given int[] input, 

produce int[] output where:

output[i] = input[0]+input[1]+…+input[i]
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Sequential prefix-sum
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int[] prefix_sum(int[] input){
int[] output = new int[input.length];
output[0] = input[0];
for(int i=1; i < input.length; i++)
output[i] = output[i-1]+input[i];

return output;
}

Does not seem parallelizable
– Work: O(n), Span: O(n)
– This algorithm is sequential, but a different algorithm has Work: O(n), Span: O(log n)



Example
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input

output

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76

How to compute the prefix-sum in parallel?



Example
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input

output

6 4 16 10 16 14 2 8



Example
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input

output

6 4 16 10 16 14 2 8

6 10 26 36 16 30 32 40



Example
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input

output

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76

+36



Example
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input

output

6 4 16 10 16 14 2 8

6 10 16 26 16 30 2 10



Example
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input

output

6 4 16 10 16 14 2 8

6 10 26 36 16 30 2 10

+10



Example

58

input

output

6 4 16 10 16 14 2 8

6 10 26 36 16 30 32 40

+10 +30



Example
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input

output

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76

+36

+10 +30



Parallel prefix-sum

The parallel-prefix algorithm does two passes
• Each pass has O(n) work and O(log n) span
• So in total there is O(n) work and O(log n) span
• So like with array summing, parallelism is n/log n

First pass builds a tree bottom-up: the “up” pass

Second pass traverses the tree top-down: the “down” pass
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Example
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input

output

6 4 16 10 16 14 2 8

range 0,8
sum



Example
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input

output

6 4 16 10 16 14 2 8

range 0,8
sum

range 0,4
sum

range 4,8
sum



Example
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input

output

6 4 16 10 16 14 2 8

range 0,8
sum

range 0,4
sum

range 4,8
sum

range 6,8
sum

range 4,6
sum

range 2,4
sum

range 0,2
sum



Example
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input

output

6 4 16 10 16 14 2 8

range 0,8
sum

range 0,4
sum

range 4,8
sum

range 6,8
sum

range 4,6
sum

range 2,4
sum

range 0,2
sum

r   0,1
s  

r   1,2
s  

r   2,3
s  

r   3,4
s  

r   4,5
s  

r   5,6
s  

r   6,7
s  

r   7,8
s  



Example
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input

output

6 4 16 10 16 14 2 8

range 0,8
sum

range 0,4
sum

range 4,8
sum

range 6,8
sum

range 4,6
sum

range 2,4
sum

range 0,2
sum

r   0,1
s  

r   1,2
s  

r   2,3
s  

r   3,4
s  

r   4,5
s  

r   5,6
s  

r   6,7
s  

r   7,8
s  6 4 16 10 16 14 2 8



Example
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input

output

6 4 16 10 16 14 2 8

range 0,8
sum

range 0,4
sum

range 4,8
sum

range 6,8
sum

range 4,6
sum

range 2,4
sum

range 0,2
sum

r   0,1
s  

r   1,2
s  

r   2,3
s  

r   3,4
s  

r   4,5
s  

r   5,6
s  

r   6,7
s  

r   7,8
s  6 4 16 10 16 14 2 8

10 26 30 10



Example
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input

output

6 4 16 10 16 14 2 8

range 0,8
sum

range 0,4
sum

range 4,8
sum

range 6,8
sum

range 4,6
sum

range 2,4
sum

range 0,2
sum

r   0,1
s  

r   1,2
s  

r   2,3
s  

r   3,4
s  

r   4,5
s  

r   5,6
s  

r   6,7
s  

r   7,8
s  6 4 16 10 16 14 2 8

10 26 30 10

36 40



Example
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input

output

6 4 16 10 16 14 2 8

range 0,8
sum

range 0,4
sum

range 4,8
sum

range 6,8
sum

range 4,6
sum

range 2,4
sum

range 0,2
sum

r   0,1
s  

r   1,2
s  

r   2,3
s  

r   3,4
s  

r   4,5
s  

r   5,6
s  

r   6,7
s  

r   7,8
s  6 4 16 10 16 14 2 8

10 26 30 10

36 40

76



Example
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input

output

6 4 16 10 16 14 2 8

range 0,8
sum
fromleft

range 0,4
sum
fromleft

range 4,8
sum
fromleft

range 6,8
sum
fromleft

range 4,6
sum
fromleft

range 2,4
sum
fromleft

range 0,2
sum
fromleft

r   0,1
s  
f

r   1,2
s  
f

r   2,3
s  
f

r   3,4
s  
f

r   4,5
s  
f

r   5,6
s  
f

r   6,7
s  
f

r   7,8
s  
f

6 4 16 10 16 14 2 8

10 26 30 10

36 40

76
0

0 36



Example
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input

output

6 4 16 10 16 14 2 8

range 0,8
sum
fromleft

range 0,4
sum
fromleft

range 4,8
sum
fromleft

range 6,8
sum
fromleft

range 4,6
sum
fromleft

range 2,4
sum
fromleft

range 0,2
sum
fromleft

r   0,1
s  
f

r   1,2
s  
f

r   2,3
s  
f

r   3,4
s  
f

r   4,5
s  
f

r   5,6
s  
f

r   6,7
s  
f

r   7,8
s  
f

6 4 16 10 16 14 2 8

10 26 30 10

36 40

76
0

0

0 3610 66

36



Example
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input

output

6 4 16 10 16 14 2 8

range 0,8
sum
fromleft

range 0,4
sum
fromleft

range 4,8
sum
fromleft

range 6,8
sum
fromleft

range 4,6
sum
fromleft

range 2,4
sum
fromleft

range 0,2
sum
fromleft

r   0,1
s  
f

r   1,2
s  
f

r   2,3
s  
f

r   3,4
s  
f

r   4,5
s  
f

r   5,6
s  
f

r   6,7
s  
f

r   7,8
s  
f

6 4 16 10 16 14 2 8

10 26 30 10

36 40

76
0

0

0

0

36

10 36 666 26 52 68

10 66

36



Example
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input

output

6 4 16 10 16 14 2 8

6 10 26 36 52 66 68 76

range 0,8
sum
fromleft

range 0,4
sum
fromleft

range 4,8
sum
fromleft

range 6,8
sum
fromleft

range 4,6
sum
fromleft

range 2,4
sum
fromleft

range 0,2
sum
fromleft

r   0,1
s  
f

r   1,2
s  
f

r   2,3
s  
f

r   3,4
s  
f

r   4,5
s  
f

r   5,6
s  
f

r   6,7
s  
f

r   7,8
s  
f

6 4 16 10 16 14 2 8

10 26 30 10

36 40

76
0

0

0

0

36

10 36 666 26 52 68

10 66

36



The algorithm, part 1

1. Up: Build a binary tree where 
• Root has sum of the range [x,y)
• If a node has sum of [lo,hi) and hi>lo, 
• Left child has sum of [lo,middle)
• Right child has sum of [middle,hi) 
• A leaf has sum of [i,i+1), i.e., input[i]

This is an easy fork-join computation: combine results by actually 
building a binary tree with all the range-sums
• Tree built bottom-up in parallel

Analysis: O(n) work, O(log n) span
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The algorithm, part 2

2. Down: Pass down a value fromLeft
• Root given a fromLeft of 0
• Node takes its fromLeft value and
• Passes its left child the same fromLeft
• Passes its right child its fromLeft plus its left child’s sum (as stored in part 1)

• At the leaf for array position i, output[i]=fromLeft+input[i]

This is an easy fork-join computation: traverse the tree built in step 1 and 
produce no result 
• Leaves assign to output
• Invariant: fromLeft is sum of elements left of the node’s range

Analysis: O(n) work, O(log n) span
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Sequential cut-off

Adding a sequential cut-off is easy as always:

Up: 
just a sum, have leaf node hold the sum of a range

Down: 
output[lo] = fromLeft + input[lo];
for(i=lo+1; i < hi; i++)

output[i] = output[i-1] + input[i]
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Parallel prefix, generalized

Just as sum-array was the simplest example of a common pattern,
prefix-sum illustrates a pattern that arises in many problems

Minimum, maximum of all elements to the left of i

Is there an element to the left of i satisfying some property?

Count of elements to the left of i satisfying some property
• This last one is perfect for an efficient parallel pack…
• Perfect for building on top of the “parallel prefix trick”
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Pack

[Non-standard terminology]

Given an array input, produce an array output containing only elements such 
that f(elt) is true

Example:  input [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
f: is elt > 10
output [17, 11, 13, 19, 24]

Parallelizable?
• Finding elements for the output is easy
• But getting them in the right place seems hard
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Parallel prefix to the rescue

1. Parallel map to compute a bit-vector for true elements
input  [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
bits   [1,  0, 0, 0,  1, 0,  1,  1, 0,  1]
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Parallel prefix to the rescue

1. Parallel map to compute a bit-vector for true elements
input  [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
bits   [1,  0, 0, 0,  1, 0,  1,  1, 0,  1]

2. Parallel-prefix sum on the bit-vector
bitsum [1,  1, 1, 1,  2, 2,  3,  4, 4,  5]
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Parallel prefix to the rescue

1. Parallel map to compute a bit-vector for true elements
input  [17, 4, 6, 8, 11, 5, 13, 19, 0, 24]
bits   [1,  0, 0, 0,  1, 0,  1,  1, 0,  1]

2. Parallel-prefix sum on the bit-vector
bitsum [1,  1, 1, 1,  2, 2,  3,  4, 4,  5]

3. Parallel map (with condition) to produce the output
output [17, 11, 13, 19, 24]
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output = new array of size bitsum[n-1]
FORALL(i=0; i < input.length; i++){
if(bits[i]==1)
output[bitsum[i]-1] = input[i];

}



Pack comments

First two steps can be combined into one pass
• Just using a different base case for the prefix sum
• No effect on asymptotic complexity

Can also combine third step into the down pass of the prefix sum
• Again no effect on asymptotic complexity

Analysis: O(n) work, O(log n) span 
• 2 or 3 passes, but 3 is a constant

Parallelized packs will help us parallelize quicksort…
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Quicksort review

Recall Quicksort was sequential, in-place, expected time O(n log n)
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Best / expected case work
1. Pick a pivot element O(1)
2. Partition all the data into: O(n)

A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

3. Recursively sort A and C                        2T(n/2)

How should we parallelize this?



Quicksort
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Best / expected case work
1. Pick a pivot element O(1)
2. Partition all the data into: O(n)

A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot

3. Recursively sort A and C                        2T(n/2)

Easy: Do the two recursive calls in parallel
• Work: unchanged of course O(n log n)
• Span: now T(n) = O(n) + 1T(n/2) = O(n)
• So parallelism (i.e., work / span) is O(log n)



Doing better

O(log n) speed-up with an infinite number of processors is okay, but a 
bit underwhelming
• Sort 109 elements 30 times faster

Google searches strongly suggest quicksort cannot do better because the 
partition cannot be parallelized
• The Internet has been known to be wrong J
• But we need auxiliary storage (no longer in place)
• In practice, constant factors may make it not worth it, but remember 

Amdahl’s Law

Already have everything we need to parallelize the partition…
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Parallel partition (not in place)

This is just two packs!
• We know a pack is O(n) work, O(log n) span
• Pack elements less than pivot into left side of aux array 
• Pack elements greater than pivot into right size of aux array
• Put pivot between them and recursively sort
• With a little more cleverness, can do both packs at once but no effect 

on asymptotic complexity
With O(log n) span for partition, the total span for quicksort is
T(n) = O(log n) + 1T(n/2) = O(log2 n)
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Partition all the data into:
A. The elements less than the pivot
B. The pivot
C. The elements greater than the pivot



Example

Step 1: pick pivot as median of three

Steps 2a and 2c (combinable): pack less than, then pack greater than into 
a second array

• Fancy parallel prefix to pull this off not shown

Step 3: Two recursive sorts in parallel
• Can sort back into original array (like in mergesort)
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8 1 4 9 0 3 5 2 7 6

1 4 0 3 5 2

1 4 0 3 5 2 6 8 9 7



Summary

Task Parallelism is simple yet powerful parallel programming 
paradigm
Based on the idea of divide and conquer (parallel equivalent to 
recursion)
Can be done by ‘hand’ or using dedicated frameworks
Java’s implementation is the Fork/Join framework
Getting good performance is not always easy -> but scales well with 
additional parallelism
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