
Parallel Programming
Shared memory concurrency, locks and data races



Big Picture (Part I)



Topics Today

§ Shared Memory: Critical Sections, Mutual Exclusion, Concept of Locks

§ Locks in Java

§ Race conditions: Data Races and Bad Interleavings

§ Guidelines for Concurrent Programming
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Toward sharing resources (memory)
Have been studying parallel algorithms using fork-join

§ Lower span via parallel tasks

Algorithms all had a simple structure to avoid race conditions
§ Each thread had memory “only it accessed”, e.g: array sub-range
§ On fork, “loan” some memory to “forkee” and do not access that memory again until 

after join on the “forkee”

Strategy won’t work well when:
§ Memory accessed by threads is overlapping or unpredictable
§ Threads are doing independent tasks needing access to same resources (rather than 

implementing the same algorithm)
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Managing state
Main challenge for parallel programs

Approaches:

§ Immutability
– Data do not change

– Best option, should be used when possible

§ Isolated mutability
– Data can change, but only one thread/task can access them

§ Mutable/shared data
– Data can change / all tasks/threads can potentially access them
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Mutable/Shared data

§ Present in shared memory architectures

§ However: concurrent accesses may lead to
inconsistencies

§ Solution: protect state by allowing only 
one task/thread to access it at a time

6Source: https://geek-and-poke.com



Dealing with mutable/shared state
State needs to be protected (in general)

– Exclusive access

– Intermediate inconsistent states should not be observed

Methods:
§ locks: mechanism to ensure exclusive access/atomicity

– Ensuring good performance / correctness with locks can be hard (especially for “programming in 
the large”)

§ Transactional memory: programmer describes a set of actions that need to be 
atomic
– Easier for the programmer, but getting good performance might be challenging
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Canonical example
Correct code in a single-threaded world
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class BankAccount {
private int balance = 0;
int getBalance()      { return balance; }
void setBalance(int x) { balance = x; } 
void withdraw(int amount) {

int b = getBalance();
if(amount > b)
throw new WithdrawTooLargeException();

setBalance(b – amount);
}
… // other operations like deposit, etc.

}



A bad interleaving
Interleaved withdraw(100) calls on the same account

§ Assume initial balance == 150
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int b = getBalance();

if(amount > b)
throw new …;

setBalance(b – amount);

int b = getBalance();
if(amount > b)
throw new …;

setBalance(b – amount);

Thread 1 Thread 2

Ti
m

e

“Lost withdraw”!



Interleaving (recap)
If second call starts before first ends, we say the calls interleave

§ Could happen even with one processor since a thread can be pre-
empted at any point for time-slicing

If x and y refer to different accounts, no problem

§ “You cook in your kitchen while I cook in mine”

§ But if x and y alias, possible trouble…
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Incorrect “fix”

It is tempting and almost always wrong to fix a bad interleaving by rearranging 
or repeating operations, such as:
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void withdraw(int amount) {
if(amount > getBalance())
throw new WithdrawTooLargeException();

// maybe balance changed
setBalance(getBalance() – amount);

}

This fixes nothing!
• Narrows the problem by one statement
• (Not even that since the compiler could turn it back into the old version because you didn’t 

indicate need to synchronize)
• And now a negative balance is possible – why?



Mutual exclusion
Sane fix: Allow at most one thread to withdraw from account A at a time

§ Exclude other simultaneous operations on A too (e.g., deposit)

Called mutual exclusion: One thread using a resource (here: an account) means 
another thread must wait
§ a.k.a. critical sections, which technically have other requirements

Programmer must implement critical sections
§ “The compiler” has no idea what interleavings should or should not be allowed in your 

program
§ But you need language primitives to do it!
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Critical Sections and Mutual Exclusion
Critical Section
Piece of code that may be executed by at most one process (thread) at a 
time

Mutual exclusion
Algorithm to implement a critical section

acquire_mutex(); // entry algorithm
...  // critical section
release_mutex(); // exit algorithm
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int b = getBalance();
if(amount > b) throw new WithdrawTooLargeException();

setBalance(b – amount);



Wrong!

Why can’t we implement our own mutual-exclusion protocol?
§ It’s technically possible under certain assumptions, but won’t work in real languages anyway
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class BankAccount {
private int balance = 0;
private boolean busy = false;
void withdraw(int amount) {

while(busy) { /* “spin-wait” */ }
busy = true;
int b = getBalance();
if(amount > b)
throw new WithdrawTooLargeException();

setBalance(b – amount);
busy = false;

}
// deposit would spin on same boolean

}



Just moved the problem!
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while(busy) { }

busy = true;

int b = getBalance();

if(amount > b)
throw new …;

setBalance(b – amount);

while(busy) { }

busy = true;

int b = getBalance();
if(amount > b)
throw new …;

setBalance(b – amount);

Thread 1 Thread 2

Ti
m

e

“Lost withdraw



What we need
§ Many ways out of this conundrum, but we need help from the language

§ A basic solution: Locks
§ Not Java yet, though Java’s approach is similar and slightly more convenient

§ Basic synchronization primitive with operations:
§ new:   make a new lock, initially “not held”
§ acquire:  blocks if this lock is already currently “held”

§ Once “not held”, makes lock “held” [all at once!]

§ release: makes this lock “not held”
§ If >= 1 threads are blocked on it, exactly 1 will acquire it
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Why that works
§ A primitive with atomic operations  new, acquire, release

§ The lock implementation ensures that given simultaneous acquires and/or 
releases, a correct thing will happen
§ Example: Two acquires: one will “win” and one will block

§ A lock thus implements a mutual exclusion algorithm.

§ How can this be implemented?
§ Need to “check if held and if not make held” “all-at-once”

§ Uses special hardware and O/S support 

§ Here, we take this as a primitive and use it
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Lock Object
Shared object that satisfies the following interface

public interface Lock{
public void lock(); // entering CS
public void unlock(); // leaving CS

}

providing the following semantics

new Lock make a new lock, initially “not held”

acquire blocks (only) if this lock is already currently “held”
Once “not held”, makes lock “held” [all at once!]

release makes this lock “not held”
If >= 1 threads are blocked on it, exactly 1 will acquire it
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Required Properties of Mutual Exclusion

Safety Property

§ At most one process executes the critical section 
code

Liveness

§ Minimally: acquire_mutex must terminate in finite 
time when no process executes in the critical section
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Almost-correct pseudocode
class BankAccount {

private int balance = 0;
private Lock lk = new Lock();
…
void withdraw(int amount) {

lk.lock(); // may block
int b = getBalance();
if(amount > b)

throw new WithdrawTooLargeException();
setBalance(b – amount);
lk.unlock(); 

}
// deposit would also acquire/release lk

}
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One lock for 
each account





Possible mistakes
Incorrect: Use different locks for withdraw and deposit

§ Mutual exclusion works only when using same lock
§ balance field is the shared resource being protected

Poor performance: Use same lock for every bank account
§ No simultaneous operations on different accounts

Incorrect: Forget to release a lock (blocks other threads forever!)
§ Previous slide is wrong because of the exception possibility!
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if(amount > b) {
lk.unlock(); // hard to remember!
throw new WithdrawTooLargeException();

}



Other operations
If withdraw and deposit use the same lock, then 
simultaneous calls to these methods are properly 
synchronized

But what about getBalance and setBalance?
§ Assume they are public, which may be 

reasonable
§ If they do not acquire the same lock, then a race 

between setBalance and withdraw could 
produce a wrong result

§ If they do acquire the same lock, then withdraw
would block forever because it tries to acquire a 
lock it already has
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public void setBalance(int x) { ..  }

public int getBalance() { ..  }

public void withdraw(int amount) {
.. 
b = getBalance()
.. 
setBalance(b – amount);
..

}

public void deposit(int amount){
..
b = getBalance()
.. 
setBalance(b + amount);
..

}



Re-acquiring locks?

One approach:
Can’t let outside world call setBalance1

Can’t have withdraw call setBalance2

Another approach:
Can modify the meaning of the Lock to 
support re-entrant locks

§ Java does this

§ Then just use setBalance2
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int setBalance1(int x) { 
balance = x; 

}
int setBalance2(int x) {
lk.lock();
setBalance1(x);
lk.unlock();

}
void withdraw(int amount) {
lk.lock();
…
setBalance1(b – amount);
lk.unlock(); 

}



Re-entrant lock
A re-entrant lock (a.k.a. recursive lock)
“remembers” 

§ the thread (if any) that currently holds it 

§ a count

When the lock goes from not-held to held, the count is set to 0
If (code running in) the current holder calls lock(acquire):

§ it does not block 
§ it increments the count

On unlock(release):
§ if the count is > 0, the count is decremented 
§ if the count is 0, the lock becomes not-held
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thread

count

A



Re-entrant locks work

§ This simple code works fine provided lk
is a reentrant lock

§ Okay to call setBalance directly

§ Okay to call withdraw (won’t block 
forever)
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int setBalance(int x) {
lk.lock();
balance = x;
lk.unlock();

}

void withdraw(int amount) {
lk.lock();
…
setBalance(b – amount);
lk.unlock();

}



Now some Java (a bit of recap)
Java has built-in support for re-entrant locks

§ Several differences from our pseudocode

§ Focus on the synchronized statement
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synchronized (expression) 
{
statements

}

1. Evaluates expression to an object
Every object “is a lock” in Java (but not 
primitive types)

2. Acquires the lock, blocking if necessary
“If you get past the {, you have the lock”

3. Releases the lock “at the matching }
Even if control leaves due to throw, 
return, etc.



External Locks

§ In Java, all objects have an internal lock, called intrinsic lock or monitor 
lock, which are used to implement synchronized

§ Java also offers external locks (e.g. in package 
java.util.concurrent.locks)
§ Less easy to use

§ But support more sophisticated locking idioms, e.g. for reader-writer scenarios
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More Java notes
Class java.util.concurrent.locks.ReentrantLock works much 
more like our pseudocode

§ Often use try { … } finally { … } to avoid forgetting to release the lock if 
there’s an exception

Also library and/or language support for readers/writer locks and conditional 
variables (future lectures)

Java provides many other features and details.  See, for example:
§ Java “Concurrency in Practice” by Goetz et al
§ Chapter 30 of “Introduction to Java Programming” by Daniel Liang
§ Chapter 14 of “CoreJava”, Volume 1 by Horstmann/Cornell
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Code examples: 
PP-L13-01IntrinsicLock, PP-L13-02ReentrantLock, PP-L12-02ReentrantLock
PP-L13-01IntrinsicLock, PP-L13-02ReentrantLock, PP-L12-03TryLock 





Race condition

A Race Condition occurs in concurrent programming when the correctness 
of the system depends on the specific interleaving or ordering of 
operations executed by multiple threads or processes.

Typically, problem is some intermediate state that “messes up” a concurrent thread 
that “sees” that state

Note: This lecture makes a big distinction between data races and bad 
interleavings, both instances of race-condition bugs
§ Confusion often results from not distinguishing these or using the ambiguous 

“race condition” to mean only one
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The distinction
Data Race [aka Low Level Race Condition, low semantic level]
Erroneous program behavior caused by insufficiently synchronized 
accesses of a shared resource by multiple threads, e.g. Simultaneous 
read/write or write/write of the same memory location

(for mortals) always an error, due to compiler & HW 

Bad Interleaving [aka High Level Race Condition, high semantic level]
Erroneous program behavior caused by an unfavorable execution order of
a multithreaded algorithm that makes use of otherwise well synchronized
resources.

“Bad” depends on your specification
33



On low- and high-level data races
Shared data balance, access protected by 
synchronized

Forgot synchronized in withdraw:
§ withdraw accesses balance only under 

lock (via setBalance / getBalance)
§ No concurrent read / write or write / write 

accesses of balance 
-> no low-level data race

§ Two withdraw operations can be 
interleaved – if this is a problem depends on 
the specification of our bank account

§ -> We can still have a high-level data race,
i.e. unwanted interleavings (intermediate 
states that should not be observed / 
violating invariants)
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public synchronized void setBalance(int x) { ..  }

public synchronized int getBalance() { ..  }

public synchronized void withdraw(int amount) {
.. 
b = getBalance()
.. 
setBalance(b – amount);
..

}

public synchronized void deposit(int amount){
..
b = getBalance()
.. 
setBalance(b + amount);
..

}



Example: Bounded Stack
class StackFullException extends Exception {}
class StackEmptyException extends Exception {}

public class Stack <E> {
E[] array;
int index;

public Stack(int entries){
// hack to generate a generic array, initialized with NIL values
array = (E[]) new Object[entries];
index = 0;

}
…

}

35

array[0]

array[1]

array[2]

array[3]
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Example: Bounded Stack
public class Stack <E> {
…

synchronized boolean isEmpty() { 
return index==0;

} 

synchronized void push(E val) throws StackFullException { 
if (index==array.length) 

throw new StackFullException(); 
array[index++] = val; 

} 

synchronized E pop() throws StackEmptyException { 
if (index==0) throw new StackEmptyException(); 
return array[--index]; 

}
}
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array[0]
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Peek ?
public class Stack <E> {
…

E peek() { 
E ans = pop();
push(ans);
return ans;

}
}
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wrong !



peek, sequentially speaking

In a sequential world, this code is of questionable style, but unquestionably correct

The “algorithm” is the only way to write a peek helper method if all you had was 
this interface:
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interface Stack<E> {
boolean isEmpty();
void push(E val);
E pop();

}

class C implements Stack {
static <E> E myPeek(Stack<E> s){ ??? }

}



peek, concurrently speaking
peek has no overall effect on the shared data

It is a “reader” not a “writer”

But the way it is implemented creates an inconsistent intermediate state
Even though calls to push and pop are synchronized so  there are no data races
on the underlying array/list/whatever

This intermediate state should not be exposed
Leads to several bad interleavings
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peek and isEmpty
Property we want (invariant): If there has been a push and no pop, then 
isEmpty returns false

With peek as written, property can be violated
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E ans = pop();

push(ans);

return ans;

push(x)
boolean b = isEmpty()

Ti
m

e

Thread 2Thread 1 (peek)
push

pop

isEmpty

…



peek and LIFO
Property we want: Values are returned from pop in LIFO order

With peek as written, property can be violated
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E ans = pop();

push(ans);

return ans;

push(x)
push(y)
E e = pop();

Ti
m

e

Thread 2Thread 1 (peek)
push

pop

push

push

pop



peek and LIFO
Property we want: Values are returned from pop in LIFO order

With peek as written, property can be violated
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E ans = pop();

push(ans);

return ans;

push(x)
push(y)
E e = pop();

Ti
m

e

Thread 2Thread 1 (peek)
push

push

pop

pop

push



The fix
In short, peek needs synchronization to disallow interleavings

§ The key is to make a larger critical section

§ Re-entrant locks allow calls to push and pop
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class Stack<E> {
…
synchronized E peek(){

E ans = pop();
push(ans);
return ans;

}
}

class C {
<E> E myPeek(Stack<E> s){
synchronized (s) {
E ans = s.pop();
s.push(ans);
return ans;

}
}

}



The wrong “fix”
Focus so far: problems from peek doing writes that lead to an incorrect 
intermediate state

Tempting but wrong: If an implementation of peek (or isEmpty) does 
not write anything, then maybe we can skip the synchronization?

Does not work due to data races with push and pop…
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boolean isEmpty() { 
return index==0;

} 



The distinction
Data Race [aka Low Level Race Condition, low semantic level]
Erroneous program behavior caused by insufficiently synchronized accesses of a shared 
resource by multiple threads, e.g. Simultaneous read/write or write/write of the same 
memory location

(for mortals) always an error, due to compiler & HW 

§ Original peek example has no data races

Bad Interleaving [aka High Level Race Condition, high semantic level]
Erroneous program behavior caused by an unfavorable execution order of a 
multithreaded algorithm that makes use of otherwise well synchronized resources.

“Bad” depends on your specification

§ Original peek had several
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Getting it right
Avoiding race conditions on shared resources is difficult

§ Decades of bugs have led to some conventional wisdom: 

general techniques that are known to work

Rest of lecture distills key ideas and trade-offs
§ Parts paraphrased from “Java Concurrency in Practice”

§ But none of this is specific to Java or a particular book!
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3 choices
For every memory location (e.g., object field) in your program, you must 

obey at least one of the following:

1. Thread-local: Do not use the location in > 1 thread

2. Immutable: Do not write to the memory location

3. Synchronized: Use synchronization to control access to the location
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all memory thread-local
memory immutable

memory

need 
synchronization



Thread-local
Whenever possible, do not share resources
§ Easier to have each thread have its own thread-local copy of a resource than 

to have one with shared updates
§ This is correct only if threads do not need to communicate through the 

resource
§ That is, multiple copies are a correct approach

§ Example:  Random objects

§ Note: Because each call-stack is thread-local, never need to synchronize on 
local variables

In typical concurrent programs, the vast majority of objects should be thread-
local: shared-memory should be rare – minimize it
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Immutable
Whenever possible, do not update objects

§ Make new objects instead

§ One of the key tenets of functional programming
§ Generally helpful to avoid side-effects

§ Much more helpful in a concurrent setting

§ If a location is only read, never written, then no synchronization is 
necessary!
§ Simultaneous reads are not races and not a problem

In practice, programmers usually over-use mutation – minimize it
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The rest
After minimizing the amount of memory that is (1) thread-shared and (2) 

mutable, we need guidelines for how to use locks to keep other data 
consistent

Guideline #0: No data races
Never allow two threads to read/write or write/write the same location at the 
same time. Do not make any assumptions on the orders of reads or writes.

Necessary: In Java or C, a program with a data race is almost always wrong

Not sufficient: Our peek example had no data races
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Consistent Locking
Guideline #1: For each location needing synchronization, have a lock that is 

always held when reading or writing the location
§ We say the lock guards the location
§ The same lock can (and often should) guard multiple locations  
§ Clearly document the guard for each location

In Java, often the guard is the object containing the location
§ this inside the object’s methods
§ But also often guard a larger structure with one lock to ensure mutual 

exclusion on the structure
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Consistent Locking continued
The mapping from locations to guarding locks is conceptual

§ Up to you as the programmer to follow it

It partitions the shared-and-mutable locations into “which lock”

Consistent locking is:

• Not sufficient: It prevents all data races but still allows bad interleavings. 
Our peek example used consistent locking
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Beyond consistent locking
Consistent locking is an excellent guideline

§ A “default assumption” about program design

Consistent locking is not required for correctness: Can have different 
program phases use different invariants

§ Provided all threads coordinate moving to the next phase
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Lock granularity
Coarse-grained:  Fewer locks, i.e., more objects per lock

§ Example: One lock for entire data structure (e.g., array)

§ Example: One lock for all bank accounts

Fine-grained: More locks, i.e., fewer objects per lock
§ Example: One lock per data element (e.g., array index)

§ Example: One lock per bank account

“Coarse-grained vs. fine-grained” is really a continuum
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…

…



Trade-offs
Coarse-grained advantages

§ Simpler to implement

§ Faster/easier to implement operations that access multiple locations (because all guarded by the 
same lock)

§ Much easier: operations that modify data-structure shape

Fine-grained advantages
§ More simultaneous access (performance when coarse-grained would lead to unnecessary 

blocking)

Guideline #2: Start with coarse-grained (simpler) and move to fine-grained 
(performance) only if contention on the coarser locks becomes an issue.  Alas, 
often leads to bugs.
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Critical-section granularity
A second, orthogonal granularity issue is critical-section size

§ How much work to do while holding lock(s)

If critical sections run for too long:
§ Performance loss because other threads are blocked

If critical sections are too short:
§ Bugs because you broke up something where other threads should not be able to see 

intermediate state
§ Performance loss because of frequent thread switching and cache trashing.

Guideline #3: Do not do expensive computations or I/O in critical sections, but 
also don’t introduce race conditions
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Example
Suppose we want to change the value for a key in a hashtable without 

removing it from the table
Assume lock guards the whole table

critical section  was too long

(table locked during expensive call)
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synchronized(lock) {
v1 = table.lookup(k);
v2 = expensive(v1);
table.remove(k);
table.insert(k,v2);

}



Example
Suppose we want to change the value for a key in a hashtable without 

removing it from the table
Assume lock guards the whole table

critical section was too short

(if another thread  updated 
the entry, we will lose an update)
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synchronized(lock) {
v1 = table.lookup(k);
}

v2 = expensive(v1);
synchronized(lock) {

table.remove(k);
table.insert(k,v2);

}



Example
Suppose we want to change the value for a key in a hashtable without 
removing it from the table
Assume lock guards the whole table

critical section was just right

(if another update occurred, 
try our update again)
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done = false;
while(!done){

synchronized(lock) {
v1 = table.lookup(k);

} 
v2 = expensive(v1);
synchronized(lock) {

if(table.lookup(k)==v1) {
done = true;
table.remove(k);
table.insert(k,v2);
}

}
}



Atomicity
An operation is atomic if no other thread can see it partly executed

§ Atomic as in “appears indivisible”

§ Typically want ADT operations atomic, even to other threads running operations 
on the same ADT

Guideline #4:  Think in terms of what operations need to be atomic
§ Make critical sections just long enough to preserve atomicity

§ Then design the locking protocol to implement the critical sections correctly

That is: Think about atomicity first and locks second
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Don’t roll your own
It is rare that you should write your own data structure
§ Provided in standard libraries

Particularly true for concurrent data structures
§ Far too difficult to provide fine-grained synchronization without race 

conditions
§ Standard thread-safe libraries like ConcurrentHashMap written by world 

experts

Practical Guideline: Use built-in libraries whenever they meet your needs
Guideline for this course: do everything to understand it yourself!
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