
Parallel Programming
PVW Script

Last Updated: June, 2022

Author: Lasse Meinen

pprog-pvw-skript@vis.ethz.ch

Disclaimer:
This script only serves as additional material for practice purposes and should not serve as a substitute
for the lecture material. We neither guarantee that this script covers all relevant topics for the exam,
nor that it is correct. If an attentive reader finds any mistakes or has any suggestions on how to improve
the script, they are encouraged to contact the authors under the indicated email address or, preferably,
through a gitlab issue on https://gitlab.ethz.ch/vis/luk/pvw script pprog.

Table of Contents

1 Introduction 3
1.1 How this script works . 3
1.2 Parallelism vs. Concurrency . 3
1.3 Basic Threads . 4

1.3.1 Thread states . 5
1.4 Bad Interleavings and Data Races . 6
1.5 Other Models . 7

2 Parallelism 8
2.1 Performance . 8

2.1.1 Speedup . 8
2.1.2 Amdahl’s Law . 8
2.1.3 Gustafson’s Law . 9

2.2 Divide & Conquer . 10
2.2.1 Task Graphs . 10
2.2.2 Executor Service . 11
2.2.3 Fork/Join Framework . 12

2.3 Pipelining . 14
2.4 Exercises . 15
2.5 Solutions . 17

3 Concurrency 20
3.1 Mutual Exclusion . 20

3.1.1 Progress Conditions . 20
3.1.2 State Diagrams . 21

3.2 Mutex Implementation . 23
3.2.1 Peterson Lock . 23
3.2.2 Filter Lock . 23
3.2.3 Bakery Lock . 24
3.2.4 Spin Lock . 25

3.3 Synchronization . 27
3.3.1 Conditions . 27
3.3.2 Semaphores . 29
3.3.3 Barriers . 29

3.4 Lock Granularity . 31
3.4.1 Coarse-Grained Locking . 31
3.4.2 Fine-Grained Locking . 32
3.4.3 Optimistic Locking . 32
3.4.4 Lazy Locking . 33

3.5 Non-Blocking Algorithms . 35
3.5.1 Atomic Operations . 35
3.5.2 ABA-Problem . 35

3.6 Linearizability and Sequential Consistency . 37
3.6.1 Histories . 37
3.6.2 Sequential Consistency . 37
3.6.3 Linearizability . 38

3.7 Consensus . 39
3.8 Memory Models . 40
3.9 Exercises . 42
3.10 Solutions . 45

4 Additional Topics 49
4.1 Sorting Networks . 49
4.2 Transactional Memory . 51

4.2.1 Concurrency Control . 52
4.2.2 Scala-STM . 52

4.3 Message Passing . 54
4.3.1 Message Passing Interface . 54
4.3.2 Point-to-Point Communication . 54

4.3.3 Group Communication . 55
4.4 Exercises . 57
4.5 Solutions . 58

5 Further Reading 61

6 Changelog 61

2

1 Introduction

1.1 How this script works

As mentioned in the disclaimer, this script is not meant to serve as a replacement for the lecture materials
presented during the semester. However, this script does try to summarize the material with comple-
mentary exercises and examples. The exercises are inspired by former exam questions, but also include
some other questions which might occur. The examples are simply meant to re-enforce the reader’s un-
derstanding of the topics.

This script was heavily inspired by ”The Art of Multiprocessor Programming” by Maurice Herlihy and
Nir Shavit and ”A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency” by Dan
Grossman. Those who are interested in the subject and would like to read more or who feel that this
script and the lecture materials didn’t manage to cover the subject matter well enough will find these
books to be good places to start, in addition to the materials provided on the course’s webpage.

1.2 Parallelism vs. Concurrency

The lecture and also this script are organized around a fundamental distinction between concurrency
and parallelism. The definitions of these terms are not universal and many people use them differently.
Nonetheless, the following definitions are the most generally accepted and making the distinction is
important to facilitate discussions on the subject.

Parallel Programming is about using additional computational resources to solve a problem faster.

example 1.1. Consider the trivial problem of summing up all numbers in an array. As far as we
know, there is no sequential algorithm that can do better than Θ(n) time. Suppose instead we had
4 processors. We could then produce the result (hopefully) 4 times faster by partitioning the array
into 4 segments, having each processor sum one segment, and combining the results with an extra 3
additions.

Concurrent Progamming is about correctly and efficiently controlling access by multiple threads to shared
resources.

example 1.2. Suppose we had several cooks (processes) working in a kitchen and they had some sort
of shared resource, e.g. an oven. Of course, a cook mustn’t put a zucchini herb casserole in the oven
unless the oven is empty. If the oven is not empty, we could keep checking until it is. In Java, you
might write something like this:

Unfortunately, code like this won’t work when we have several threads run it at the same time,
i.e. when we have several cooks. Problems like these are the primary complication in concurrent
programming. Both cooks might observe the oven to be empty and then both put a casserole in,
ruining their dishes in the process. Therefore, we need to think of ways to check if the oven is empty
and put the casserole in without any other thread interfering in the meantime.

It’s all-too-common for a conversation to become muddled because one person is thinking about paral-
lelism, while the other is thinking about concurrency.

In practice, the distinction between parallelism and concurrency is not absolute. Many programs have
aspects of each. Suppose you had a huge array of values you wanted to insert into a hash table. From
the perspective of dividing up the insertions among multiple threads, this is about parallelism. From the
perspective of coordinating access to the hash table, this is about concurrency. Also, parallelism does
typically need some coordination: even when adding up integers in an array we need to know when the
different threads are done with their chunk of the work.

3

It’s generally believed that parallelism is an easier concept to start with and we’ve ordered the chapters
accordingly.

1.3 Basic Threads

Before writing any parallel or concurrent programs, we need some way of making multiple things happen
at once and some way for those different things to communicate.

The programming model we will assume is explicit threads with shared memory. A thread is like a
running sequential program, but one thread can create other threads that are part of the same program
and those threads can create more threads, etc. Two or more threads can communicate by writing and
reading fields of the same object. They can see the same objects because we assume memory to be shared
among them.

Conceptually, all the threads that have been started but not yet terminated are ”running at once” in
a program (we can’t tell the difference). In reality, they may be running at any particular moment, as
there may be more threads than processors or a thread may be waiting for something to happen before it
continues. When there are more threads than processors, it’s up to the Java implementation, with help
from the underlying operating system, to find a way to let the threads ”take turns” using the available
processors. This is called scheduling and is a major topic in operating systems. All we need to care about
is that it’s not under our control: We create the threads and the system schedules them.

We will now discuss some how to create a new thread in Java. The details vary in different languages. In
addition to creating threads, we will need other language constructs for coordinating them. For example,
for one thread to read the result of another thread’s computation, the reader often needs to know the
writer is done.

To create a new thread in Java requires that you define a new class and then perform two actions at
run-time:

1. Define a subclass of java.lang.Thread and override the public method run, which takes no
arguments and has return type void. The run method will act like ”main” for threads created
using this class. It mustn’t take any arguments, but the example below shows how to work around
this inconvenience.

2. Create an instance of the class created in step 1. Note that this doesn’t create a running thread.
It just creates an object.

3. Call the start method of the object you created in step 2. This step does the ”magic” creation of
a new thread. That new thread will execute the run method of the object. Notice that you do not
call run; that would just be an ordinary method call. You call start, which makes a new thread
that runs run. The new thread terminates when its run method completes.

example 1.3. Here is a useless Java program that starts with one thread and then creates 20 more
threads:

When running this program, it will print 40 lines of output, the order of which we cannot predict;
in fact, you will probably see the output appear in different orders every run. This showcases that
there is no guarantee that threads created earlier will run earlier. Therefore, multithreaded programs
can exhibit nondeterministic behavior. This is an important reason why multithreaded programs

4

are much harder to test and debug.

We can also see how this program worked around the fact that run doesn’t take any arguments. Any
”arguments” for the new thread are passed via the constructor, which then stores them in fields so
that run can later access them.

We mentioned previously that we’d like to make a thread wait before reading a value until another thread
has finished its computations, i.e. its run method. We can do this with the join keyword, which we’ll
introduce through another somewhat senseless example.

example 1.4. Here is a Java program that starts with one thread which spawns 20 more threads and
waits for all of them to finish.

The join method can throw an InterruptedException, which means we need to wrap it in a
try-catch block.

1.3.1 Thread states

If we want to be able to talk about the effects of different thread operations, we need some notion of
thread states. In short, a Java thread typically goes through the following states:

• Non-Existing : Before the thread is created, this is where it is. We don’t know too much about this
place, as it’s not actually on our plane of reality, but it’s somewhere out there.

• New : Once the Thread object is created, the thread enters the new state.

• Runnable: Once we call start() on the new thread object, it becomes eligible for execution and
the system can start scheduling the thread as it wishes.

• Blocked : When the thread attempts to acquire a lock, it goes into a blocked state until it has
obtained the lock, upon which it returns to a runnable state. In addition, calling the join()

method will also transfer a thread into a blocked state.

• Waiting : The thread can call wait() to go into a waiting state. It’ll return to a runnable state
once another thread calls notify() or notifyAll() and the thread is removed from the waiting
queue.

• Terminated : At any point during execution we can use interrupt() to signal the thread to stop its
execution. It will then transfer to a terminated state. Note that when the thread is in a runnable
state, it needs to check whether its interrupted flag is set itself, it won’t transfer to the terminated
state automatically. Of course, exiting the run method is equivalent to entering a terminated state.
Once the garbage collector realizes that the thread has been terminated and is no longer reachable,
it will garbage collect the thread and return it to a non-existing state, completing the cycle.

5

1.4 Bad Interleavings and Data Races

A race condition is a mistake in your program such that whether the program behaves correctly or not
depends on the order in which the threads execute. Race conditions are very common bugs in concurrent
programming that, by definition, do not exist in sequential programming. We distinguish two types of
race conditions.

One kind of race condition is a bad interleaving. The key point is that ”what is a bad interleaving”
depends entirely on what you are trying to do. Whether or not it is okay to interleave two bank-account
withdraw operations depends on some specification of how a bank is supposed to behave.

example 1.5. Suppose we have the following implementation of a peek operation on a concurrent
stack.

Assume that the pop and push methods are implemented correctly. While peek might look like it’s
implemented correctly, the following interleaving might occur:

Thread 1 (peek) Thread 2

A data race is a specific kind of race condition that is better described as a ”simultaneous access error”,
although nobody uses that term. There are two kinds of data races:

• When one thread might read an object field at the same moment that another thread writes the
same field.

• When one thread might write an object field at the same moment that another thread also writes
the same field.

Notice it is not an error for two threads to both read the same object field at the same time.

Our programs must never have data races even if it looks like a data race would not cause an error - if our
program has data races, the execution of your program is allowed to do very strange things: The exact
behavior that the program is allowed to exhibit is usually defined in the memory model of a language,
we’ll get to the memory model of Java later.

example 1.6. Let’s consider a very simple example.

Notice that f and g are not synchronized, leading to potential data races on fields x and y,
Therefore, the assertion in g can fail. But there is no interleaving of operations that justifies the
assertion failure, as can be seen through a proof by contradiction:

Assume the assertion fails, meaning !(b>=a). Then a==1 and b==0. Since a==1, line B happened
before line C. Since A must happen before B, C must happen before D, and ”happens before” is a

6

transitive relation, A must happen before D. But then b==1 and the assertion holds.

There is nothing wrong with the proof except its assumption that we can reason in terms of ”all
possible interleavings” or that everything happens in certain orders. We can reason this way only if
the program has no data races.

1.5 Other Models

We’ve introduced a programming model of explicit threads with shared memory. This is, of course,
not the only programming model for concurrent or parallel programming. Shared memory is often
considered convenient because communication uses ”regular” reads and writes of object fields. However,
it’s also considered error-prone because communication is implicit; it requires a deep understanding of the
code/documentation to know which memory accesses are doing inter-thread communication and which
are not. The definition of shared-memory programs is also much more subtle than many programmers
think because of issues regarding data races, as discussed in the previous section.

Three well-known, popular alternatives to shared memory are presented in the following. Note that
different models are better suited for different problems. Models can be abstracted and freely built on
top of each other or we can use multiple models in the same program (e.g. MPI with Java).

Message-passing is the natural alternative to shared memory. In this model, explicit threads do not share
objects. For them to communicate, copies of data are exchanged as messages between processes. As
objects are not shared between individual threads, the issue of threads wrongly updating fields does not
occur. One does, however, have to keep track of the different data copies being passed around through
messages. Message passing is especially fitting for processes which are far apart form each other, similar
to sending an email, where a copy of the message is sent to the recipient.

Dataflow provides more structure than having ”a bunch of threads that communicate with each other
however they want.” Instead, the programmer uses primitives to create a directed acyclic graph. A node
in the graph performs some computation using inputs that arrive on its incoming edges. This data is
provided by other nodes along their outgoing edges. A node starts its computation when all of its inputs
are available, something the implementation keeps track of automatically.

Data parallelism does not have explicit threads or nodes running different parts of the program at different
times. Instead, it has primitives for parallelism that involve applying the same operation to different pieces
of data at the same time. For example, you would have a primitive for applying some function to every
element of an array. The implementation of this primitive would use parallelism rather than a sequential
for-loop. Hence all the parallelism is done for you provided you can express your program using the
available primitives.

7

2 Parallelism

This chapter covers the basics of parallelism and how to examine the performance of a parallel program.
Recall that when we talk about parallelism, we mean the use of additional computational resources
to solve a problem faster. The exercises in this chapter will usually ask you to implement a parallel
algorithm to solve a certain problem, to recognize the issue of a given implementation and to analyze the
performance of an implementation.

2.1 Performance

2.1.1 Speedup

Before we have a look at different ways of measuring performance, we first need to introduce some
terminology. To that end, let P denote the number of processors available during the execution of a
program.

Definition 2.1.1. TP is the time it takes the program to execute on P processors.

Remark. T∞ denotes the execution time when we have as many processors at our disposal as is
required to get the best-possible execution time.

We will usually use T1 to talk about the sequential and T∞ to talk about the minimum execution time
of a program. When talking about performance in general, we will use TP .

Definition 2.1.2. The speedup of a program is

SP :=
T1

TP

The speedup is essentially the ratio of the sequential execution time to the execution time given P
processors.
Naively, we might expect the speedup of our program to always be SP = P , i.e. TP = T1/P . However,
reality is often disappointing. Additional overheads caused by inter-thread dependencies, creating threads,
communicating between them and memory-hierarchy issues can greatly limit the speedup we gain from
adding more processors.

2.1.2 Amdahl’s Law

We noted in the previous section that the speedup of a given parallel program can be greatly decreased
due to overhead caused by several issues introduced by parallelizing the program; in fact, any sequential
part of a program can drastically impact the maximum achievable speedup. We will derive Amdahl’s law
here to see why this is the case.

Let Wser denote the time spent doing non-parallelizable, serial work and Wpar denote the time spent
doing parallelizable work.
We then write:

T1 = Wser + Wpar

It’s easy to see that Wser remains constant as we increase the number of processors. Therefore, given P
processors, we obtain the following lower bound on TP :

TP ≥Wser +
Wpar

P

Recall the definition of speedup. Plugging in the relations derived above, we get:

SP =
T1

TP
≤ Wser + Wpar

Wser +
Wpar

P

Let f denote the non-parallelizable, serial fraction of the total work. We then obtain the following
equalities:

Wser = f ∗ T1

Wpar = (1− f) ∗ T1

This gives us the more common form of Amdahl’s Law:

8

Theorem 2.1. Let f denote the non-parallelizable, serial fraction of the total work done in a program
and P the number of processors at our disposal. Then, the following inequality holds:

SP ≤
1

f + 1−f
P

When we let P go to ∞, we see:

S∞ ≤
1

f

In order to see why this is such an important result, we can try plugging in a couple of values. Assume that
25% of a program is non-parallelizable. This means that even with the IBM Blue Gene/P supercomputer
with its 164’000 cores, we can only achieve a speedup of at most 4. While a depressing result at first
sight, this makes perfect sense when we consider the fact that these 25% are completely fixed, in the
sense that the execution time can’t possibly be reduced past this point.

The conclusion to draw from this result is that it’s worth investing some more time into reducing the
sequential fraction of our program, e.g. by reducing the overhead of communicating between threads or
by reducing the granularity of locks in our code as much as possible.

2.1.3 Gustafson’s Law

Amdahl’s law considered a fixed workload and provides us with an upper bound on the speedup achievable
when increasing the number of processors at our disposal. As the obtained result is rather depressing,
we seek to find something slightly more optimistic. This leads us to an approach where we increase the
problem size as we improve the resources at our disposal. In other words, we consider the time interval
to be fixed and look at the problem size.
Let W denote the work done in a fixed time interval. We get

W = f ∗W + (1− f) ∗W

As we increase the number of processors at our disposal, we can only speed up the parallel fraction of
our program. The serial fraction remains the same. Letting WP be the work done with P processors at
our disposal, we get

WP = f ∗W + P ∗ (1− f) ∗W

We can now follow Gustafson’s law.

Theorem 2.2. Let f denote the non-parallelizable, serial fraction of the total work done in the
program and P the number of processors at our disposal. Then, we get

SP = f + P (1− f)

= P − f(P − 1)

If we again consider a program where 25% is non-parallelizable, we get a speedup of 4 when we increase
the number of processors to 5.

It has to be noted that Gustafson’s law and Amdahls law aren’t really different views on the same
problem, but instead make different assumptions about the problem. Amdahl’s law is based on the
assumption that the problem size is fixed and that the time is minimized whereas Gustafson’s law is
based on the assumption that the time is fixed and that the problem size is minimized. For example
Amdahl’s law might be better applicable to problems like sorting a fixed set of integers, but Amdahl’s
law could be used to describe the problem of rendering a 3D-scene as detailed as possible - the level of
detail can be increased in the case of 3D-rendering, but there’s no such thing as sorting a set of integers
in a more exact way.

9

2.2 Divide & Conquer

In divide & conquer we split a problem into smaller subproblems, solve the task recursively for each of
these and combine the results such that we obtain the final result for the entire problem. To see how this
approach works, let’s construct a small example:

example 2.1. Through some weird twist of faith, we’re given a list of the number of clocks each
Swiss citizen posseses and are tasked with finding the maximum among all of these. For the sake of
simplicity, suppose this list only has eight entries.

15 7 9 8 4 22 42 13

The first step of a divide & conquer algorithm is to divide the problem into smaller subproblems.

15 7 9 8 4 22 42 13

We then continue on like this until we reach a base case. Note that we break the list into single
numbers and not into pairs of numbers. The reason for this is that the list might have an odd length,
which of course can’t be broken into pairs of numbers.

15 7 9 8 4 22 42 13

Then we begin to find the maximum, 2 numbers at a time.

15 9 22 42

We continue on like this until only one number remains.

42

We’ve thus come to the conclusion that the largest number of clocks owned by a single person in
Switzerland is 42.

This algorithm consisted of three steps. First, we broke the list into two smaller lists. This is known as
the ”divide” step. Then, we solved the task for each of these sublists. This is known as the ”conquer”
step. Finally, we combined the results of the subproblems by taking the maximum of the two returned
maxima.

While divide & conquer algorithms seem very natural to parallelize, we currently have no easy way of
determining the efficiency of these algorithms in a parallel setting and it’s quite tedious to implement
using regular Java threads. We will therefore first introduce a way of visualizing the performance of a
divide & conquer algorithm and will then look at two different libraries to see how we can easily implement
this.

2.2.1 Task Graphs

We will describe a program execution as a directed acyclic graph where:

• Nodes are pieces of work the program performs. Each node will have a an annotated execution
time after which the results of the computation are available.

• Edges represent that the source node must complete before the target node begins, i.e. there is a
data dependency along the edge.

We will now connect this visual representation of the execution of a program with the terminology
introduced in the previous section by introducing two more terms:

• Work is the sum of the time cost of all nodes in the graph, i.e. T1.

• Span is the sum of the time cost of all nodes along the critical, i.e. longest, path in the graph. The
span determines the best possible execution time we can achieve by introducing more processors,
i.e. T∞.

10

example 2.2. Let’s return to our example from the previous section where we try to find the largest
number of clocks currently owned by a Swiss citizen. Assume that splitting a list into two sublists
can be done in 3 ”time units”, finding the maximum can be done in 2 units and appending two lists
can be done in 4 units.

The task graph will then look like this:

3
3 3

3 3 3 3

2 2 2 2 2 2 2 2

4 4 4 4

2 2 2 2

4 42 24

2

Let’s say we wish to compute the maximum achievable speedup we can gain by parallelizing this
algorithm, i.e. S∞. We know that the formula for speedup is

SP =
T1

TP

T1 is defined as the sum of the time cost all nodes in the graph, which in this case would be 79. We
can compute T∞ as the sum of the time cost of all nodes along the critical path, which we see is 29.
As a final result, we thus obtain

S∞ =
79

29
≈ 2.72

We recognize from the width of the graph that we can issue at most 8 operations in parallel. This
means that we achieve T∞ with 8 processors, i.e. S8 = S∞

2.2.2 Executor Service

Instead of managing the threads ourselves we can use a library which manages a threadpool to which we
can submit tasks. A task is either:

• A Runnable object, which implements a method void run() and doesn’t return a result

• or a Callable<T> object, which implements a method T call() and returns a result of type T.

Upon submitting a task a Future<T> is created, which represents the result of an asynchronous com-
putation, it also acts as a container for the value and can be used to wait for the underlying task to
complete. Implementing a divide & conquer algorithm now looks a lot more straightforward.

11

example 2.3. We wish to submit tasks to the ExecutorService such that we can obtain some sort
of result from the task’s execution. We therefore need to implement a Callable task (i). We’ve
additionally provided the code for creating an ExecutorService and submitting the topmost task
(ii). Try running it locally and see what happens.

(i) implementation of Callable task

(ii) implementation of main method

You should see that the program never terminates. The reason for this is that the ExecutorService

limits the number of threads that can be spawned. Once all threads are occupied by tasks waiting
for the result of spawned subtasks, execution is therefore halted. Even though the threads aren’t
actually doing any useful work they still take up the allocated threads in the thread pool. No threads
are available to run the subtasks on, i.e. the subtasks will wait indefinitely.

With the ExecutorService the limited thread pool size caused the program to run forever, as all currently
active threads were occupied by tasks waiting for the spawned subtasks to return. While there are possible
approaches that could alleviate this problem, e.g. separating the work partitioning from solving the sub-
tasks, they are all non-trivial to implement and are therefore not well suited for use in practice.

2.2.3 Fork/Join Framework

We continue our search for a library well-suited to implementing divide & conquer algorithms. The
java.util.concurrent package includes classes designed exactly for this type of fork-join parallelism.
Compared to Java threads, the usage of these classes is identical, but with some different names and
interfaces. First, we’ll introduce the required terminology. Second, we’ll have a look at the generic recipe
for implementing fork-join parallelism.

We use the library as follows:

• Instead of extending Thread, we extend RecursiveTask<T> (with return value) or RecursiveAction
(without return value)

• Instead of overriding run, we override compute

• Instead of calling start, we call fork

• Instead of a topmost call to run, we create a ForkJoinPool and call invoke

Also, note that in the case of RecursiveTask<T>, join now returns a result.
The fork-join library is able to see under the hood that it can reuse the thread if it is only waiting for
another task to complete. This isn’t possible to detect if plain java threads are used, thus this approach
only works if we limit ourselves to awaiting and spawning tasks using the primitives provided by the
library. This technique is called work-stealing scheduling.

12

example 2.4. We again return to our previous example of trying to find the largest number of clocks
currently owned by any Swiss citizen. We’d again like our tasks to return a result. We therefore
need to implement a RecursiveTask<T> (i). We’ve additionally provided the code for creating a
ForkJoinPool and submitting the topmost task (ii). Try running it locally and see if it works this
time around.

(i) Implemention of RecursiveTask

(ii) Implementation of main method

Several things should be noted in this example. First, changing anything about the order in which
the subtasks were called will result in a sequential execution (try it!). Second, similar to how we did
it for regular threads, we call compute() instead of submitting another task using fork().
In this case we can also call fork() in for both subtasks and won’t see any considerable slowdown:
The fork-join framework won’t create a new thread and the overhead will be minimal for any rea-
sonable problem.It still makes sense to switch to a serial solution for smaller problem sizes and in
the base case if optimal performance is required.
Both in the case of the ForkJoin-framework and of ExecutorService, one should pay extra atten-
tion as to how to split the array such that all indices are covered exactly once. In this example and
example 2.3, note the way the middle index was computed and think about what indices the h and
l variables represented exactly.

13

2.3 Pipelining

There are three approaches to applying parallelism to improve sequential processor performance. The
first is vectorization, where we essentially apply operations N-at-a-time, as opposed to the standard one-
at-a-time approach. The second is instruction level parallelism, where we ask ourselves which instructions
are independent of each other and can therefore be executed in parallel and/or reordered. This is where
keywords such as superscalar CPUs and out-of-order execution come into play. The third and most
important approach that we will consider is pipelining.

Pipelining is a technique where multiple independent instructions are overlapped in execution through
the use of several execution units, provided they are available for use.

Definition 2.3.1. Throughput is the number of instructions that exit the pipeline per a given
time unit. Throughput can be calculated as follows:

Throughput ≈ 1

max(computationtime(stages))

Note that we usually consider throughput when the pipeline is fully utilized, i.e. ignoring lead-in and
lead-out time.

Definition 2.3.2. Latency is the time to perform a single computation, including wait time re-
sulting from resource dependencies.

When designing a pipeline, it’s always our aim to increase throughput and decrease latency as much as
possible. However, the two goals are often conflicting.

Definition 2.3.3. A pipeline is balanced if the latency remains constant over time.

example 2.5. We return to the good old washing cycle pipeline, only with a little twist this time
around. The stages of the washing cycle consist of first using the washing machine, then the dryer,
folding the washing, and finally putting it away in the closet. The washing machine is quite a cheap
brand and takes 15 minutes per washing (as opposed to the usual 5 minutes). The dryer takes 10
minutes, folding the washing 5 minutes, and putting it away in the closet another 5 minutes.

Time (m) 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Load 1 w w w d d f c
Load 2 w w w d d f c
Load 3 w w w d d f c
Load 4 w w w d d f c
Load 5 w w w d d f c

Looking at the definitions above, we find that the latency is 30 minutes and the throughput is 1 load
per 15 minutes. In order to improve our throughput, we buy a new washing machine and give away
the old one to charity. The new execution time for the washing stage is 5 minutes.

Time (m) 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
Load 1 w d d f c
Load 2 w - d d f c
Load 3 w - - d d f c
Load 4 w - - - d d f c
Load 5 w - - - - d d f c

We see that our new throughput is 1 load per 10 minutes. Latency, however, seems to be increasing,
i.e. the pipeline is now unbalanced.

This example illustrated one important problem that can occur in pipelines. Despite achieving high
throughput, the latency increased indefinitely. Over the years it has become evident that improving
sequential processor performance with methods such as these is not enough. This has led to the devel-
opment of parallel architectures such as multicore processors and processors implementing simultaneous
multithreading as we know them today.

14

2.4 Exercises
1. Amdahl’s Law, Gustafson’s Law, Performance.

1. Suppose a computer program has a method M that cannot be parallelized, and that this method
accounts for 40% of the program’s execution time. What is the limit for the overall speedup that
can be achieved by running the program on an n-processor multiprocessor machine according to
Amdahl’s Law?

2. The analysis of a program has shown a speedup of 5 when running on 15 cores. What is the serial
fraction according to Amdahl’s Law (assuming best possible speedup)?

3. The analysis of a program has shown a speedup of 5 when running on 15 cores. What is the serial
fraction according to Gustafson’s Law?

2. Task Graph. The following figure shows the task graph for an algorithm. The number in each
node denotes the execution time per task. What is the maximum overall achievable speedup that can
be achieved by parallelism when the algorithm runs once compared to sequential execution? How many
processors are required to achieve this speedup?

3. Fork/Join Framework. Given an array of integers, your task is to find the maximum subarray
sum among all possible subarrays. For example,

{2, -4, 1, 9, -6, 7, -3} → 11 (marked in bold)

Extend the following class such that it computes the maximum subarray sum as described above.

15

4. Pipelining. Over at UZH, the law students have been tasked with writing a legal essay about the
philosophy of Swiss law. To write the essay, a student first needs to inform themselves about the subject.
To do so, they must read from four different books, each of which contains some information necessary
to understand the next book.

Every student takes the same amount of time to read a book, and can only read the books in the specified
order:

1) Reading book A takes 80 minutes

2) Reading book B takes 40 minutes

3) Reading book C takes 120 minutes

4) Reading book D takes 40 minutes

Unfortunately, the library only has a single copy of each book.

1. Let’s assume all law students are a bit too competitive and don’t return any books before they’re
done reading all of them. How long will it take for 4 students until all of them have started writing
their essays?

2. The library introduces a ”one book at a time” policy, i.e. the students have to return a book before
they can start on the next one. How long will it now take for 4 students until all of them have started
writing their essays? What is the throughput of this ”pipeline” per hour? What is the latency?

3. Where is the problem with this system? What can the library do to solve this problem?

16

2.5 Solutions

1. Amdahl’s Law, Gustafson’s Law, Performance.

1. We see that the program has a serial fraction of at least 40%. Therefore, we set f ≥ 0.4 and insert
this into the formula specified by Amdahl’s Law:

SP ≤
1

f + 1−f
P

=
1

0.4 + 0.6
P

P→∞−−−−→ 1

0.4
= 2.5

2. Assuming best possible speedup, Amdahl’s Law tells us the following holds true

SP = 5 =
1

f + 1−f
P

=
1

f + 1−f
15

⇐⇒

5f +
1− f

3
= 5f − 1

3
f +

1

3
= 1

⇐⇒

f =
1

7

3. Gustafson’s Law tells us the following holds true

SP = f + P (1− f) = f + 15(1− f) = 5

⇐⇒
14f = 10

⇐⇒

f =
5

7

2. Task Graph. The formula for speedup is SP = T1

TP
. We know that T1 is the simply the sum of the

execution times of all nodes, i.e. T1 = 100. We also know that the best-possible execution time achievable
through parallelization is limited by the length of the critical path. The critical path has length 75, i.e.
T∞ = 75. Inserting these values into the formula for speedup gives us:

S∞ =
T1

T∞
=

100

75
≈ 1.33

We find that two processors are enough to achieve this speedup.

17

3. Fork/Join Framework. We stick to the generic recipe for the Fork/Join framework. The difficulty
with this exercise is the merging of the results of the two subtasks, as the maximum subarray sum might
contain elements of both array partitions. We therefore need to additionally compute the maximum
subarray sum which crosses the middle border and return the maximum of the three sums.

4. Pipelining.

1. In the case of sequential execution, we simply need to add the execution times of the four stages
together and multiply this by the number of students.

(80 + 40 + 120 + 40) ∗ 4 = 280 ∗ 4 = 1120 minutes

2. We assume all students immediately pick up a book as soon as it’s available and they’ve finished
reading the previous one. We can then model execution in the following way:

Time (s) 0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640 680 720

Load 1 A A B C C C D
Load 2 A A B - C C C D
Load 3 A A B - - C C C D
Load 4 A A B - - - C C C D
Load 5 A A B - - - - C C C D

We compute the throughput the standard way, i.e. Throughput = 1
120 . Therefore, throughput is 1

student per 2 hours.

When looking at the diagram above we see that the waiting time before students can read book C,
and therefore also the latency, increases indefinitely.

3. Latency increasing indefinitely is a sign that the pipeline is unbalanced. There are several solutions
to this problem. First, the library could force people to keep each book for exactly 120 minutes or,
slightly more efficient, to keep book A for 120 minutes and book B for 80 minutes. Alternatively,

18

the library could buy a second copy of book C. The reader is encouraged to model the execution and
convince themselves that this would alleviate the issue. A last option would be to just split book C
into two copies, effectively replacing the third stage with two stages, each with an execution time of
60 minutes.

Time (s) 0 40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640 680 720

Load 1 A A B C C‖C’ C’ D
Load 2 A A B C C‖C’ C’ D
Load 3 A A B C C‖C’ C’ D
Load 4 A A B C C‖C’ C’ D
Load 5 A A B C C‖C’ C’ D

19

3 Concurrency

In the introductory chapter, we saw how several threads accessing the same objects can lead to incorrect
or undesirable executions and dubbed such cases data races. In this chapter, we’ll first define the term
mutual exclusion and the properties that can be associated with mutual exclusion. We’ll then implement
mutual exclusion as locks.
To widen our understanding of mutual exclusion implementations, we’ll have a look at some of the more
high-level synchronization primitives such as semaphores and barriers. Implementing what we’ve learned,
we’ll then look at different strategies of implementing concurrent data structures, moving from locked
structures to lock-free structures. After having seen some of the challenges of lock-free programming,
we’ll finally close with the introduction of some basic concurrency theory, which could help us show that
our concurrent object is indeed correct or see how strong a certain synchronization primitive is.

For every memory location in your program, you must obey at least one of the following:

• Thread local: Do not use the location in more than one thread, e.g. by giving each thread its
own copy of a resource, provided that threads don’t need to communicate through this resource.

• Immutable: Do not write to the memory location. You can enforce this by declaring such a
variable final.

• Synchronized: Use synchronization to control access to the location.

• Atomic operations: Use only atomic operations to ensure that the correct result is obtained in
all cases.

In practice, programmers usually over-synchronize their programs. When writing a concurrent program,
you should focus on putting as much as possible in the first two categories, as synchronization is usually
very expensive.

3.1 Mutual Exclusion

If a programmer isn’t able to make a memory location thread-local or immutable, they must ensure that
no bad interleavings or data races occur by implementing mutual exclusion. This is done by defining
critical sections, i.e. sections of code which only one thread at a time is allowed to execute.

We will now first define progress-conditions and use these to explain the requirements for the correct
implementation of a critical section. We will then turn our attention to finite state diagrams, which will
allow us to formally determine whether all these requirements hold.

3.1.1 Progress Conditions

When talking about concurrent algorithms, we distinguish between blocking and non-blocking algorithms.

As one might think, in blocking algorithms threads might occasionally go into a blocked state, e.g. when
attempting to acquire a lock. Among blocking algorithms, we distinguish two further cases:

• Deadlock-free: At least one thread is guaranteed to proceed into the critical section at some
point.

• Starvation-free: All threads are guaranteed to proceed into the critical section at some point.

In non-blocking algorithms, threads never enter a blocked state, i.e. can always continue execution. This
mainly suggests that the algorithms don’t use any locks. We again distinguish two further cases:

• Lock-free: At least one thread always makes progress.

• Wait-free: All threads make progress within a finite amount of time.

When comparing the different definitions listed above, we notice a few things. We see that lock-freedom
and starvation-freedom both imply deadlock-freedom. We further notice that wait-freedom implies both
lock-freedom and starvation-freedom. We summarize the different conditions in the following table.

Blocking Non-Blocking
Someone makes progress Deadlock-Free Lock-Free
Everyone makes progress Starvation-Free Wait-Free

Of course, it’s perfectly possible that an algorithm fits into none of these categories, e.g. when there is
an execution that results in a deadlock.

20

We can now define the requirements for correct implementation of a critical section. A critical section
has to be:

• Deadlock-free: At least one thread can enter the critical section.

• Mutually exclusive: At most one thread is in the critical section at a time.

example 3.1. We’ve written a class BooleanFlags that increments a counter 1000 times:

When running the program with two threads the counter turns out to be unexpectedly low.

Looking at the implementation, we see that the critical section is in between the flag = true and
flag = false statements. The problem here is that there is a possible execution of the two threads,
namely when both read flag == false before either of them could set flag = true, where both
threads enter the critical section. Therefore, the second requirement of mutual exclusiveness is
violated and this implementation is incorrect.

As a final note, it’s important to mention livelocks. Livelock occurs when all or at least some threads are
changing state, but none of them actually enter the critical section. One might think of this visually as
two people in a narrow hallway continuously trying to get past each other by stepping aside, but always
stepping in the same direction. Note that a livelock doesn’t mean that there is no possible execution
which results in a thread entering the critical section, but simply that there is the possibility of the
threads returning to the same state without any thread entering the critical section. This also implies
that the algorithm isn’t deadlock-free by definition.

3.1.2 State Diagrams

An execution state diagram visually represents the different states and state transitions between them
a particular program might go through. A program state is determined by the instructions the threads
are executing and the states of global variables and concurrent objects. A state transition is then simply
represented by arrows between such boxes.

example 3.2. We continue the previous example and construct the state diagram corresponding to
the given code snippet, where we restrict ourselves to two threads for simplicity. We represent a
state by a tuple (pi, qj, b) for i, j ∈ {1, 2, 3} and b ∈ {0, 1}.
pi resp. qj represents the instruction the corresponding thread P or Q is about to execute. The
represented instructions are:

• i = 1: while(flag != false);

• i = 2: flag = true;

• i = 3: cnt++;

b represents the value of flag.

21

We see that there is indeed a path of state transitions leading to a state in which both threads are
in the critical section. Therefore, the code doesn’t provide mutual exclusion.

As you might have noticed, we omitted/summarized non-critical states for the sake of brevity.

Using this state transition diagram, we can now easily recognize whether the critical section is imple-
mented correctly.

• Deadlocks can be recognized by states which have no outgoing state transitions.

• Livelocks are any possible cycle of state transitions in which in none of the states a thread is in
the critical sections.

• The critical section is mutually exclusive if there is no state in which more than one thread is in
the critical section.

22

3.2 Mutex Implementation

We will now look at different ways of actually implementing mutual exclusion. We will first look at
different algorithms, always considering their advantages and disadvantages, then their efficiency on
modern multiprocessors and how to improve further. To understand how these implementations were
constructed or what the concrete proofs of the characteristics look like, one should consult the lecture
slides or Chapter 2 of the book ”The Art of Multiprocessor Programming” by Herlihy and Shavit.

In the following, we assume all reads and writes are atomic. This assumption is necessary, as while
we do add the volatile keyword to all array declarations, this only concerns the array references,
not their entries. In practice, one would declare the arrays to be arrays of AtomicIntegers, i.e. as
AtomicIntegerArray.

3.2.1 Peterson Lock

We assume only two threads attempt to acquire the lock, one with ThreadID == 0 and the other with
ThreadID == 1. The idea of the algorithm is as follows:

1. Set our flag, thereby indicating that we’re interested in entering the critical section.

2. Indicate that the other thread is allowed to go first. The thread that arrives at this statement first
will enter the critical section first.

3. Wait until the other thread is either no longer interested in entering the critical section or until
we’re allowed to go first.

4. Indicate that we’re no longer interested.

It’s easy to see that the Peterson Lock satisfies the requirements for correct implementation of a critical
section. In fact, it’s even starvation-free. One can prove this using a short proof by contradiction.

An obvious disadvantage of this implementation is that it only implements mutual exclusion for two
threads. In most cases, we are interested in providing mutual exclusion for many more threads. The next
section will adapt the Peterson Lock to do just that.
It should also be noted that the implementation depicted here isn’t entirely correct: As we’ll see later
the Java memory model doesn’t give us the guarantee of sequential consistency for writes to elements
of array references, therefore a correct implementation would have to utilize the AtomicIntegerArray

class, the same applies to several other implementations.

3.2.2 Filter Lock

As mentioned in the previous section, the Filter Lock is a generalization of the Peterson Lock. In order
to implement mutual exclusion for up to n threads, we create n− 1 ”levels” that a thread must traverse
(3) before entering the critical section.

We generalize the notion of a two-element flag array with an n-element level array (1), where the value
of level[T] indicates the highest level thread T is trying to enter. Each level k has an entry victim[k]
(2), indicating that the thread specified in this entry wants to enter the level.

Initially, a thread is at level 0. We say that T is at level k for k > 0, when it completes the waiting loop
(4) with level[T] ≥ k. Note that this also means that a thread at level k is also at level k − 1 and so on.
A thread can complete the waiting loop when another thread wants to enter its level or no more threads
are in front of it.

23

We can prove by induction that for k ∈ [0, n− 1], there are at most n− k threads at level k. Therefore,
we can draw the key conclusion that at most 1 thread can be at level n − 1, i.e. in the critical section.
Again using induction, we can also show that the Filter Lock is starvation-free, which implies that it is
also deadlock-free. In summary, the Filter Lock correctly implements mutual exclusion.

However, one issue remains. We split the lock() method into two sections:

1. A doorway section, whose execution interval consists of a bounded number of steps.

2. A waiting section, whose execution interval may take an unbounded number of steps.

We can now define a notion of fairness.

Definition 3.2.1. A lock is first-come-first-served if, whenever, thread A finishes its doorway before
thread B starts its doorway, then A cannot be overtaken by B.

In the case of the FilterLock we can define the first two instructions of the for-loop to be the doorway
and the waiting loop to be the waiting section. Finding an execution which doesn’t adhere to the above
definition is left as an exercise.

In summary, the FilterLock does implement starvation-free mutual exclusion, but isn’t fair according
to the first-come-first-served principle.

3.2.3 Bakery Lock

The Bakery Lock is inspired by the number-dispensing machines often found in bakeries (or in the case
of Switzerland: Post offices).

The implementation is relatively straightforward: We have a flag array, indicating whether the thread
want to enter the critical section or not, and a label array, where label[i] contains the label assigned to
the thread with ThreadID == i. In the doorway section, we take a label, which is the current highest
label incremented by one, and set our entry in the flag array. Note that several threads can receive the
same label at this point. We then remain in the waiting section until we have the lowest label (or in the
case of identical labels: the lowest id) among all threads wanting to enter the critical section.

24

Proving that the BakeryLock is deadlock-free follows directly from the fact that the labels are strictly
increasing and that the id assigned to each thread is unique. Therefore, there is always some thread with
a unique (label, ThreadID) pair which is allowed to proceed into the critical section.

It’s very easy to see that the BakeryLock is also first-come-first-serve, as once thread A has finished the
doorway section, any subsequent thread B will always choose a higher label, thereby allowing A to go
first. Note that any algorithm that is both deadlock-free and first-come-first-serve is also starvation-free.

We can prove that the BakeryLock provides mutual exclusion using a proof by contradiction, where we
make use of the uniqueness of the (label, ThreadID) pair.

3.2.4 Spin Lock

When implementing mutual exclusion, there are two different choices on what to do when we cannot
immediately acquire a lock. The first choice would be to continue trying to acquire the lock. This is
called spinning or busy waiting. The FilterLock and BakeryLock are such spinlocks. As spinning takes
up CPU cycles, this approach only makes sense on a multiprocessor system. The second choice would
be to ask the operating system’s scheduler to schedule another thread on your processor until the lock
becomes available again. This is called blocking. Because switching from thread to another is expensive,
blocking only makes sense if you expect the lock delay to be long.

Unfortunately, our lock implementations up until now won’t work on most modern processors and com-
pilers. This is because the compiler and the underlying hardware architecture do not guarantee memory
operations to occur in-order. We tried to somewhat alleviate this issue by introducing the volatile

keyword, but this only guaranteed reads and writes to the array reference to be in-order, not to the
entries of this array.

We, therefore, arrive at a lock implementation using TAS and TATAS operations, which will be intro-
duced in the sub-chapter ”Non-Blocking Algorithms”, for those unfamiliar with the concepts. When

measuring performance, we see that both TASLock and TATASLock, while slightly better, both perform
poorly. The reasons for this can be found in modern hardware architecture:

• Calls to getAndSet() and set() force other processors to invalidate their cached copies of the

25

state variable. This means that the next call to get() and getAndSet() will need to read from
main memory. Continuing like this, it’s easy to see that nearly every call will read from main
memory.

• Nearly each call reading from main memory also means that the shared bus will be under heavy
use. This means that all threads using the bus will be slowed down considerably.

The TATASLock performs slightly better, as the expensive call to compareAndSet() happens less often
than in tthe TASLock example.

One possibility to alleviate this problem would be to implement an exponential backoff. This means that
every time we don’t manage to acquire the lock, we wait for a random amount of time m ∈ [0, tx], where
x is the number of times we’ve failed to acquire the lock and t is the initial wait time.

26

3.3 Synchronization

As mentioned above, when we have a memory location which is neither thread-local nor immutable, we
need to make sure we synchronize the resource properly across all threads. We, therefore, introduce
the synchronized keyword. When a thread encounters the synchronized keyword, it will always first
attempt to obtain the lock to the specified object. Until it obtains the lock, it will block.

example 3.3. We return to the example from section 3.2.1. Removing the incorrect synchronization
primitive from the class and implementing mutual exclusion using the synchronized keyword gives
us:

Note that it’s not possible to synchronize on a primitive value. One might be tempted to turn cnt

into an Integer, but this would result in erroneous behavior. The reason for this is that primitive
wrapper objects such as Integers are immutable. Therefore, Java will create a new object every
time we increment the cnt variable. The monitor is associated with the object itself and not the
reference that is used to access it, assigning to a reference will result in the lock being held on the
object that the reference originally referred to.

Every Java object, including classes itself, not just their instances, has an associated lock, meaning that
we can use it to enforce mutual exclusion using synchronized. We can also include the synchronized

in the method signature:

public synchronized void someMethod(){...}

This is equivalent to:

public void someMethod() { synchronized(this){...} }

This means that before proceeding with the execution of the method body, we will first acquire the lock
on the this object, which is either an instance of the class or the class itself if the method is declared
static.

Note that Java locks are reentrant.

Definition 3.3.1. A lock is reentrant if it can be acquired multiple times by the same thread.

When creating a concurrent program with mutable, shared state, we think in terms of what operations
need to be atomic. Locks do pretty much just that: Changes made inside of a synchronized block
appear to other threads (provided they also acquire the lock before reading mutable, shared fields) to
take place instantaneously. Nonetheless, locks aren’t all rainbows and sunshine. When we have large
critical sections which are all protected by locks, we reduce the parallelizable fraction in our program by
a lot. Thinking back to Amdahl’s Law, we know that this drastically reduces the possible speedup of our
program.

3.3.1 Conditions

Quite often, one might come across a case where a thread is only allowed to proceed once a certain
condition has been met. One might be tempted to put the condition in a while-loop and let the thread
spin until the condition is fulfilled. This solution, however, would be grossly inefficient, as this spinning
thread would still be taking up a lot of CPU cycles, thereby slowing down all other threads.

Lucky for us, Java locks provide methods created for this exact purpose. All of the following methods
can only be called inside of a synchronized block, i.e. when the thread holds the lock.

27

• wait(): Thread is moved into an inactive state and is inserted into the waiting queue. The thread
releases the lock on which wait() was called.

• notify(): Some thread is removed from the waiting queue and moved into an active state. The
thread that was just woken up will then proceed to attempt to re-acquire the lock normally. Note
that we do not have any control over what thread is woken up.

• notifyAll(): All threads are removed from the waiting queue and moved into an active state. All
these threads will then proceed to attempt to re-acquire the lock.

A very important thing to remember here is that the operating system might randomly wake up a waiting
thread (spurious wakeups) or another thread might interrupt the waiting thread. Both of these cases
would lead to the thread being woken up, possibly with an InterruptedException. To prevent the
thread from continuing execution normally despite the condition not being fulfilled, we need to put it in
a while-loop, as opposed to a simple if-statement.

The java.util.concurrent.locks library also provides similar methods. In order to use them, we first
need to create a Condition object, on which we can then call await(), signal() and signalAll(). The
definitions for these three methods are identical to the ones listed above provided by the synchronized

primitive, but for the separation of waiting queues. Instead of associating a waiting queue with a lock,
we associate it with the Condition object. This means that we can have several waiting queues for a
single lock. The advantage of this will become clear momentarily.

There are two very important rules to using wait()/notify():

1. Always enclose a wait() statement in a while loop. The reason for this is that the operating
system may randomly wake up a thread, without us having ever called notify(). These events are
called spurious wakeups. In addition, notifyAll() wakes up all threads, meaning also those for
which the entry condition might not have been fulfilled, yet.

2. Only call wait() or notify() when holding the lock to the corresponding object. Java will throw
an exception otherwise.

The two rules listed above also hold for the Condition interface.

example 3.4. Let’s say we work for some nameless company housed in a concrete monolith. The
company has received complaints from the basement-housed employees that the nearest women’s
bathroom is two floors up. We’re tasked with converting the basement’s men’s bathroom to a unisex
bathroom, with the following constraints:

• There cannot be men and women in the bathroom at the same time.

• There should never be more than three employees squandering company time in the bathroom.

All of this, of course, without causing a deadlock.
We came up with a system which allows whoever is standing outside of the bathroom to tell how
many people and of which gender are inside. Therefore, the protocol for entering and exiting the
bathroom will look as specified in the code.

This problem allows for a very nice visual interpretation of the difference between using wait()/notify()
and using Conditions. The implementation using wait()/notify() creates a single queue in front
of the bathroom entrance. Whenever someone leaves the bathroom, everybody in the queue will try
to enter the bathroom. If they see that they can’t, i.e. one of the requirements listed above doesn’t
hold, they’ll get back in the queue. Otherwise, they’ll enter the bathroom.

By contrast, using the Condition interface allows us to split this queue into two queues, one for
male employees and the other for female employees. Whenever someone leaves the bathroom, they’ll
tell one of the queues that they’re allowed to try and enter the bathroom. In order to have some
fairness, when an employee is the last person to leave the bathroom, they’ll always signal the queue
of the opposite gender.

28

It’s important to note that even when the creation of several waiting queues could, in theory, be a lot
more efficient, the synchronized primitive is implemented so much more efficiently in Java, that using
the Condition interface is usually not worth the effort.

3.3.2 Semaphores

Up until now, locks have always ensured that only a single thread enters the critical section. Yet in some
cases, this might not be what we want. If, for example, we have a server that can support up to 100
requests at a time, we want to be able to allow up to 100 threads into the critical section. This is where
semaphores come into play.

A semaphore is a generalization of mutual exclusion locks. Each semaphore S has a capacity of N and
provides the following operations:

• acquire(S): Blocks until N > 0, then decrements N .

• release(S): Increments N .

Note that both operations above should be considered to be atomic, to avoid data race or bad interleav-
ings. The simplest approach to implementing semaphores is, therefore, to associate a lock with the two
methods. Implementing a semaphore is left as an exercise.

3.3.3 Barriers

We now want to go one step further. We wish to create a barrier which blocks all threads up until a
certain threshold of N threads. Once the threshold has been reached all threads waiting in the barrier
are allowed to continue execution. We distinguish between non-reusable and reusable barriers. Note that
in reusable barriers, we, next to correctly resetting the barrier to its initial state, have to deal with the
issue that threads might attempt to re-enter the barrier while the other ones are still ”draining” out.

29

The non-reusable barrier has a relatively simple implemen-
tation, which can be seen in Fig. 1. Each ar-
riving thread increments the counter (taking the lock to
avoid race conditions) and attempts to acquire the barrier

semaphore, thereby going into a blocked state. Once
all threads have arrived, i.e. count == threshold, the
barrier semaphore is set to 1, allowing one thread to
pass. Whenever a thread passes the barrier it imme-
diately releases it again so that the next thread may
proceed with its execution. This method of acquiring
and releasing the barrier semaphore is called a turn-
stile.

The reusable barrier is implemented in such a way that it can be reused once all waiting threads are
released. To simplify our implementation, we assume no additional threads call the await() method
before all waiting threads have been released.
The reusable barrier consists of two parts. First, the threads increment the counter, attempt to acquire
the barrier1 semaphore and go into a blocking state. Once the threshold is reached the barrier1

semaphore is incremented so that the threads are allowed to pass the turnstile and enter the second part
of the barrier. Additionally, the barrier2 semaphore is decremented, thereby making the second part of
the barrier behave identically to the first part, only now decreasing the counter. In the second part of
the barrier, threads will be allowed to pass the turnstile once the counter’s value is 0.
Note that once all threads have exited the barrier, all values have been restored to their original state,
thereby allowing the barrier to be reused again.

At this point, the reader is encouraged to think about why the different parts are necessary and what
could go wrong if we changed anything about them. For example, what happens when a thread that has
just left the barrier tries to re-enter? Will it overtake the other threads? If not, what prevents it from
doing so?

30

3.4 Lock Granularity

We’ve seen that the size of our critical section greatly influences the possible speedup we can achieve
through parallelization. When programming with locks, it’s common practice to start off essentially wrap-
ping everything that remotely resembles a critical section in one huge lock. This is called coarse-grained
locking. In this sub-section, we introduce different locking strategies which, with some customization,
can be applied to many different concurrent data structures. We introduce these strategies at the hand
of sorted linked lists.

example 3.5. A sorted linked list implements the following methods

• add(x): adds x to the list in the position corresponding to the lexicographic ordering of x,
returning false if x is already contained in the list.

• remove(x): removes x from the list, returning false if the list doesn’t contain x.

• contains(x): returns true if the list contains x.

3.4.1 Coarse-Grained Locking

With coarse-grained locking, we take the sequential implementation of the data structure and synchronize
all of its methods.

example 3.6. We only show the remove method for brevity:

The disadvantage here is the considerable size of the critical section. As all the methods share a single lock
and start by acquiring and end by releasing it, this implementation allows for barely any concurrency
whatsoever. However, this strategy does have one advantage: its simplicity. Implementing it doesn’t
require any effort on the side of the programmer.

31

3.4.2 Fine-Grained Locking

As a first step of improving coarse-grained locking, we can lock individual elements instead of the entire
data structure. As a thread traverses the data structure, it locks each node when it first visits it and
releases it once it has acquired the lock for the next node. This method of locking is called hand-over-hand
locking. This method allows threads to traverse the data structure in a pipelined fashion.

To avoid deadlocks, all threads must acquire the locks in some predefined order, e.g. in the case of the
sorted linked list, all threads start at the head and don’t try to ”skip” nodes.

example 3.7. In order to avoid deadlocks, it’s important that all threads acquire the locks in some
predefined order. In the case of sorted linked lists, this requirement is easily met by always starting
at the head sentinel and only proceeding in a hand-over-hand fashion.

We’ve now implemented an actual concurrent data structure, in the sense that several threads can operate
on it simultaneously. But unfortunately, this strategy is still far from perfect. As threads iterate over this
data structure in a pipelined fashion, the slowest thread sets the tempo for all threads that immediately
follow it, meaning that a potentially ”fast” thread might experience a considerable slowdown. Also, for
large data structures, there is still a potentially long chain of lock acquisitions and releases.

3.4.3 Optimistic Locking

With optimistic locking, we take somewhat of a risk. We iterate the data structure without taking any
locks. Once we’ve found the required elements we lock them and check if everything is still correct. If we
find that in-between finding the elements and taking the locks the state of the data structure changed to
one where we can’t execute our operation reliably anymore, we start over. As such conflicts are rare, we
consider this approach to be optimistic.

Implementing such a verification method is non-trivial and requires careful thought. What state do we,
as an operating thread, expect and how can we check that this expected state actually holds?

32

example 3.8. In the case of the sorted linked list, we verify the following two conditions:

• The curr node, i.e. the node we’re operating on, is still reachable.

• pred still points to curr, i.e. the two nodes we’re about to operate on are actually the ones
we should operate on.

The reader is encouraged to check for themselves whether these two conditions are sufficient to
guarantee a correct execution, e.g. by removing or weakening one condition and finding a case that
would result in an incorrect execution.

We’ve now been able to alleviate most issues. Nonetheless, a few remain. First, by always calling
validate, we’re essentially iterating the list twice. If we then have a high amount of thread contention,
i.e. a lot of threads operating on the same area of the data structure, these validate will often return
false, thereby forcing most threads to re-iterate the entire list. Finally, we would like an operation as
simple as the contains method to not have to acquire any locks whatsoever, as this does seem like a
slight overkill.

3.4.4 Lazy Locking

Lazy synchronization builds on top of optimistic synchronization by adding a boolean marked field to
each node, which - when false - holds the invariant that

• the node is in the set and

• the node is reachable.

The remove method now first lazily removes a node by setting its marked bit, then physically removes
it, e.g. by redirecting the pointer from the previous node. We adjust the validate method so that it
only checks whether the marked bit is set and whether the local state is still as expected. Therefore, the
remainder of the add and remove methods can be left the same. Finally, we change the contains method
such that it simply iterates the data structure without taking any locks and, if it finds the specified node,
checks whether it’s marked or not.

33

example 3.9. The concrete implementation of the sorted linked list according to the lazy locking
strategy now looks as follows.

34

3.5 Non-Blocking Algorithms

While locks allow us to relatively easily make an operation atomic, there are still several important
disadvantages to locking:

1. Locks are pessimistic by design i.e. they assume the worst and enforce mutual exclusion

2. Severe performance issues: Even when uncontested, a lock acquisition must read and write from
main memory. When the lock is contested, this degradation becomes much worse.

3. Locking is hard. A delayed thread might slow down all subsequent threads, deadlocks might occur,
interrupt handlers become much harder to implement correctly, etc.

We, therefore, strive to create operations and data structures that don’t use any locks whatsoever. To
see how we can implement these we’ll first have a very quick look at the most important different atomic
primitives, which are also provided by the Java java.util.concurrent library. Then we’ll direct our
attention to implementing an actual lock-free concurrent data structure and the problems that might
occur when implementing one.

3.5.1 Atomic Operations

All of the following methods are provided by the java.util.concurrent.atomic package. Note that
some of them are not available in other programming languages.

The testAndSet() operation takes a byte or word which represents a boolean value, reads the stored
boolean value and stores the value for true. It then returns the previously read value. We’ve already
seen how we can implement a simple spin lock using this atomic operation.

The compareAndSet() method takes two arguments: an expected value and an update value. If the
current stored value is equal to the expected value, it updates it to the specified update value, otherwise
the value is left unchanged. Finally, it returns a boolean value indicating whether the value was replaced
or not.

An AtomicMarkableReference<T> is an object that encapsulates both a reference to an object of type
T and a boolean mark bit. Both of these fields can be updated atomically, either alone or both at once.
This leads us to a new version of the compareAndSwap() operation, namely the so-called double compare-
and-swap, which takes four values: two expected values and two update values. It atomically checks
whether both the reference and the mark bit are as expected, replaces them by the update values if so
and returns a boolean value indicating whether the values were replaced or not.
It also provides the attemptMark(T expectedReference, boolean newMark) method, which checks
whether the reference is as expected and, if it is, replaces the mark bit.
Finally, it’s important to mention that the get(boolean[] marked) has a somewhat unusual interface,
as it returns the object’s reference value and stores the mark value in the boolean array which was passed
as an argument.

3.5.2 ABA-Problem

Several different lock-free data structures were introduced during the lectures. For the sake of brevity,
we’ll focus on a lock-free stack implementation here.

35

Using the atomic operations introduced above, we can relatively easily implement a lock-free stack:

We see that we create a new node for every single push operation. As an optimization, we implement a
node pool which allows for reuse of the node objects:

When we adjust the stack implementation to use such a NodePool, we do indeed see a massive improve-
ment in execution time. However, we see that the program exhibits erroneous behavior for some runs.
This leads to a very common problem in lock-free concurrent programming, the ABA Problem.

Definition 3.5.1. The ABA problem occurs when one activity fails to recognize that a single
memory location was modified temporarily by another activity and therefore erroneously assumes
that the overall state has not been changed.

In the case of the lock-free stack with node reuse, this means the following scenario would exhibit an
ABA-problem: We try to pop and observe that head == a and head.next == b. We then try to compare-
and-set head to b. Suppose however, that another thread removes both a and b, pushes some other node
c and then pushes a. We would then observe head == a as expected and set head == b, a node which
is possibly not even in the stack at the time.

There are several possible alternatives to alleviate the ABA problem:

• DCAS: We can check whether both head and head.next are as expected, but doesn’t exist on
most platforms.

• Garbage Collection: Would eliminate the need for a NodePool, but is very slow and doesn’t
always exist either.

• Pointer Tagging: By incrementing the address bits made available by alignment, we can decrease
the odds of the ABA problem occuring by a lot. Nonetheless, this doesn’t actually alleviate the
problem, only delay it.

• Hazard Pointers: We can associate an AtomicReferenceArray<Node> with the data structure
where we temporarily store references which we’ve read and wish to write to in the future. Whenever
we return a Node to the NodePool, we check whether its reference is stored in the hazarduous array.
While this solution does work, the final product of a NodePool doesn’t really improve performance
when compared to regular memory allocation with a garbage collector.

36

3.6 Linearizability and Sequential Consistency

We’ve now looked at many different ways of implementing both blocking and non-blocking concurrent
data structures and ensuring correctness. Interestingly enough, we did all this without ever properly
defining what a correct parallel execution is. That is the aim of this section, defining different notions of
correctness, some more strict than others, so that we may argue and prove things about our implemen-
tations.

3.6.1 Histories

We won’t argue about implementations as a whole just yet. First, we’ll consider one specific execution,
called a history, and argue whether this specific history is correct.

A method call consists of a method invocation and response. An invocation that has no matching
response is called pending. A history is a finite sequence of method invocations and responses. A sub-
history is a subsequence of the events. complete(H) is the subsequence of a history H consisting of all
matching invocation and response events in H. A history is sequential if every invocation is immediately
followed by a matching response, i.e. when no method calls overlap.

example 3.10. We’re given the following history:

We can see that the first two method calls and the last two method calls overlap.
An easy visualization of histories is through the use of time lines. In this case, it could look like this:

A s.push(1): *--------------*

B s.push(2): *-------------*

B s.pop()->1: *----------------------*

A s.pop()->2: *-------------------*

There are many possibilities of representing a given history with a timeline, as we have no way of
telling how long a specific method call might take compared to others or how much time passes in
between method calls.

We say that method call m0 precedes a method call m1 if m0 finished before m1 started, i.e. m0’s
response event occurs before m1’s invocation event. We denote this by m0 →H m1.

3.6.2 Sequential Consistency

Definition 3.6.1. A program must fulfill two requirements to be deemed sequentially consistent:

• Method calls should appear to happen in a one-at-a-time, sequential order. This means
that given a history H, every thread subhistory is a sequential history, i.e. every method call
returns before the next one starts.

• Method calls should appear to take effect in program order. This means that we can order
all method calls such that they

1. are consistent with respect to the program order, i.e. they adhere to the ordering imposed
by the thread subhistories

2. meet the object’s sequential specification

Note that it’s possible for a history to have several possible sequential orderings such that the above
holds.

37

example 3.11. We continue our example from the previous section and check whether the history is
sequentially consistent.

The first requirement states that method calls should appear to happen in a one-at-a-time, sequential
order, i.e. that every thread subhistory is a sequential history. Indeed, we see that this requirement
holds for both thread subhistories H|A and H|B, i.e. each method call finishes before the next one
starts.

The second requirement asks us to find a method call ordering such that they are consistent w.r.t.
program order and they meet the object’s sequential specification. One such ordering is given by

s.push(1) → s.push(2) → s.pop()->2 → s.pop()->1

Note that this is not the only possible ordering. Another possibility would’ve been

s.push(2) → s.push(1) → s.pop()->1 → s.pop()->2

Recognizing that progam order, i.e. thread subhistories, is repsected by both of these orderings, is
left up to the reader as an exercise.

3.6.3 Linearizability

The idea behind linearizability is that the concurrent history is equivalent to some sequential history.
The rule is that if one method call precedes another, then the earlier call must have taken effect before
the later call. By contrast, if two method calls overlap, then their order is ambiguous, and we are free to
order them in any convenient way.

Definition 3.6.2. A history H is linearizable if it has an extension H’ such that H’ is complete
and there is a legal sequential history S such that

1. complete(H’) is equivalent to S, and

2. if m0 →H m1, then m0 →S m1

We can extend this notion by the following theorem:

Theorem 3.1. H is linearizable if, and only if, for each object x, H|x, i.e. the subhistory of H with
only all method calls concerning object x, is linearizable.

Composability is important because we can design, implement and also prove things about concurrent
systems in a modular fashion. Note that sequential consistency has no such property.

38

3.7 Consensus

To bring this chapter to a close, we want to define a notion of how strong a certain synchronization
primitive, such as test-and-set, is. Using this we could, for example, show that there is an ordering on
all synchronization primitives, such that no primitive at one level can be used for a wait-free or lock-free
implementation of any primitives at higher levels.

The idea is as follows: Each class in the hierarchy has an associated consensus number, which is the
maximum number of threads for which objects of the class can solve an elementary synchronization
problem called consensus.

A consensus object provides a single method decide(). Each thread calls the decide() method with
its input v at most once. The object’s decide() method will then return a value meeting the following
conditions:

• consistent : all threads decide the same value

• valid : the common decision value is some thread’s input

In other words, a concurrent consensus object is linearizable to a sequential consensus object in which
the thread whose value was chosen completes its call to decide() first.

We are interested in wait-free solutions to the consensus problem, that is, wait-free concurrent implemen-
tations of consensus objects. For historical reasons, any class that implements consensus in a wait-free
manner is called a consensus protocol. We say that a class C solves n-thread consensus if there exists
a consensus protocol using any number of objects of class C and any number of atomic registers. The
consensus number of a class C is the largest n for which that class solves n-thread consensus.

A typical consensus protocol will look as follows:

Let’s quickly have a look at what this would look like in an example:

example 3.12. We’re given an atomic implementation of the test-and-set primitive as specified in
the previous section. We wish to show that test-and-set solves 2-thread consensus. To that end, we
construct the following consensus protocol:

We see that the call to TAS(X) will only return true once, namely the first time it’s called.
Otherwise, it’ll always return false. It’s therefore easy to see that the returned result is both consistent
and valid. As the protocol doesn’t contain any loops or other dependencies, it’s wait-free. Therefore,
we’ve provided a correct 2-thread consensus protocol and shown that test-and-set implements 2-
thread consensus.

Note that we can’t extend this implementation to n-treads, as a ”loser” thread has no way of telling
which entry of the proposed array it should use.

39

We’ve now defined what a consensus protocol is. Next, we would like to be able to prove things about
concurrent objects using these consensus protocols, e.g. that a concurrent object solves at most n-thread
consensus for some n.

A protocol state consists of the states of the threads and the shared objects. When several threads call a
consensus protocol, each thread makes moves until it decides on a value. Here, a move is a method call
to a shared object, i.e. a transition from one state to the next.
A wait-free protocol’s set of possible states forms a tree of finite depth, where each node represents a
possible protocol state and each edge represents a possible move by some thread.
In the case of binary consensus, i.e. when the only possible decision values are 0 and 1, a protocol state
is called bivalent if the decision value is not yet fixed, i.e. several final states are reachable in which
the decision value differ. In contrast, we call a protocol state univalent if the outcome is fixed, i.e. all
reachable final states decide on the same value. Finally, a critical state is a bivalent state in which any
move leads to a univalent state.

example 3.13. One of the most important proofs in concurrency theory using consensus protocols
shows that, surprisingly, atomic registers have consensus number 1. Note that this doesn’t mean that
only one thread is allowed to try and access an atomic register at a time, it simply means that we
can’t solve n-thread consensus for n> 1 using atomic registers. The proof roughly looks as follows:

Suppose there exists a binary consensus protocol for two threads A and B. As every consensus
protocol is wait-free, it goes through a finite number of bivalent states. We can, therefore, run the
protocol until we reach a critical state s. Assume A’s next move carries it to a 0-valent state and
B’s next move to a 1-valent state. We will now consider an exhaustive list of the methods that they
might be about to call to cause such a state transition.

Suppose A is about to read a given register (we don’t care about B here). Then there are two
possible scenarios: either B moves first, carrying the protocol to a 1-valent state s’, or A moves first,
carrying the protocol to a 0-valent state s”. Let’s say that in both cases B would then run solo,
eventually deciding 0 or 1, respectively. But as the read A only changes its thread-local state, states
s’ and s” should be indistinguishable to B, i.e. it should decide on the same value in both scenarios,
a contradiction.

In the next case we consider, suppose that both threads are about to write to different registers,
A to r0 and B to r1. Either A first writes to r0 and B to r1, carrying the protocol to 0-valent state,
or B writes first, carrying the protocol to a 1-valent state. The problem is that, once again, the two
resulting protocol states are indistinguishable from each other, which is a contradiction.

In the final case, suppose that both threads are about to write to the same register r. First,
suppose that A writes first, carrying the protocol to a 0-valent state, and B then runs solo, eventually
deciding 0. Second, suppose that B writes first and runs solo, therefore eventually deciding 1. The
problem is that in both cases B overwrote whatever it is that A wrote into the register, i.e. B can’t
tell the difference between the two states. We’ve therefore reached another contradiction.

We’ve now shown that for all three possible types of consensus protocols one might construct using
atomic registers, we reach a contradiction. It’s therefore impossible to construct a 2-thread consensus
protocol using atomic registers, i.e. atomic registers have consensus number 1.

In the proof above, one might be tempted to solve the problems leading contradictions using locks
or by allowing one thread to go first, but then the protocol wouldn’t be guaranteed to finish within in a
bounded number of steps, i.e. it wouldn’t be wait-free.

3.8 Memory Models

At their core most programming languages only define which results are possible when executing a
program written in that language, but do not define what happens on a hardware level. The illusion
that the code is executed exactly as written on a hardware level mostly exists for the convenience of the
programmer, but it is not a requirement. This makes programming languages portable between different
systems where different hardware mechanisms can be used to implement the programming language.
Defining the possible outputs is especially hard for concurrent programs where the language wants to
allow the implementor of the compiler some freedom for optimization while at the same time giving
programmers a reasonable amount of guarantees about the program’s behaviour. Memory models define
a valid set of executions, i.e. orders in which the underlying actions of a program are executed.

40

We’ll take a look at the memory model of the Java programming language here - not all details are
important, but some general overview can be helpful when considering whether a program works correctly
or not.
Let’s go over some guarantees that Java provides - please note that some of the concepts are presented
in a slightly simplified form here:

• Access atomicity: Reads / writes to fields are atomic, except for fields of type long / double, which
are not atomic except when they are declared as volatile. This allows 32-bit Java VMs to use regular
32-bit reads / writes for cases where access atomicity isn’t required.

• Independence: Array elements and fields of objects are independent, i.e. writing to one two distinct
elements / fields of an array should ont influence other elements / other fields. This prohibits word
tearing, which is common for architectures where memory can only be accessed in the unit of a
word.

Valid executions are defined based on several orders which are discussed in the following section.

Synchronization Order The synchronization order is a total order of all synchronization actions of
an execution - it is consistent with the program order in each thread. Synchronization actions are:

• locks: Acquiring a lock, unlocking a lock, or waiting for a condition variable.

• volatile: Writing or reading a volatile field.

• threads: Starting or stopping a thread, but also the process of initializing variables to their default
state before the thread starts.

Java provides the guarantee of ”synchronization order consistency” - all reads are guaranteed to
return the value of the last write in the synchronization order. In other words: Synchronization actions
are sequentially consistent.

This alone isn’t that useful to programmers though: Because synchronization order consistency only
applies to synchronization actions there are no guarantees at all about how normal program actions
behave in relation to these synchronization actions.

Synchronizes-with Order The synchronizes-with order describes the dataflow between different threads:
The synchronization actions that are write-actions ”synchronize-with” actions that observe that change
i.e. if a thread observes that the value of a volatile field is changed then the write is related to the read
in the synchronizes-with order.

Happens-before Order The happens-before order is the most essential order out of all of the ones de-
scribed here: It is constructed by taking the transitive closure of the program order and the synchronizes-
with order. The Java memory model guarantees happens-before consistency in this case: every read can
see either the latest write in the happens-before order, or any other write that is not ordered by HB. This
allows data races too: If two writes aren’t related in the happens-before order they might both provide
the value to a read to that field.

Because it includes the program order it actually provides guarantees about actions that aren’t syn-
chronization actions too.

The main take-away here is: Don’t expect to see data to which the current thread is not related using
the synchronizes-with order.

41

3.9 Exercises
5. Mutual Exclusion. A program is executed by two threads A and B. Each thread has three state-
ments, labelled ai and bi, respectively. Statements a3 and b3 correspond to the critical section. In the
following state diagrams, each state is described by the current statement for each thread in the form
{ai, bi}. Arrows show the possible state transitions.

For each of the diagrams, decide whether the program implements mutual exclusion correctly. If not,
argue what the problem(s) are. Distinguish between livelock and deadlock.

(i)

(ii)

(iii) (iv)

6. Progress Conditions.

1. Consider the following implementation of a concurrent stack’s push method.

Name the Progress Conditions fulfilled by this implementation of the push method and describe your
reasoning.

2. Prove that a wait-free program cannot use locks.

3. Suppose two cooks share a kitchen. In order to avoid both cooks using the same ingredient simul-
taneously (which would be really awkward), cooks need to know in advance what ingredients they
need and then call the following program:

42

What’s the problem with this implementation? Describe a scenario that could cause the issue to
occur and suggest a way to resolve it.

7. Peterson’s.

1. Consider the following implementation of the Peterson Lock.

Draw the state diagram with all the relevant states and decide, based on the diagram, whether this
implementation is correct or not. If not, describe what the problem is.

2. Another way to generalize the two-thread Peterson lock is to arrange several 2-thread Peterson locks
in a binary tree. Suppose n is a power of two.

Each thread is assigned a leaf lock which it shares with one other thread. Each lock treats one thread
as thread 0 and the other thread as thread 1.

In the tree-lock’s lock method, the thread acquires every two-thread Peterson lock from that thread’s
leaf up to the root. The tree-lock’s unlock method unlocks each of the 2-thread Peterson locks that
thread has acquired, from the root back down to its leaf. At any time, a thread can be delayed for a
finite duration (In other words, threads won’t drop dead). For each property, either sketch a proof
that it holds, or describe a (possibly infinite) execution where it’s violated.

1. Mutual exclusion

2. Freedom from deadlock

3. Freedom from starvation

8. Fairness. Recall the definition of first-come-first-served : A lock is first-come-first-served if, whenever
thread A finishes its doorway before thread B starts its doorway, A cannot be overtaken by B.

Describe an execution of the Filter Lock which doesn’t adhere to the definition of first-come-first-served.

9. Lock Granularity.

1. Explain why the Fine-Grained Locking algorithm isn’t subject to deadlock.

2. Show a scenario in the Optimistic Locking algorithm where a thread is forever attempting to delete
a node.

43

10. Linearizability and Sequential Consistency.

1. Draw a timeline for each of the following histories:

A: s.push(2)

B: s.top()

A: void

C: push(1)

C: void

B: 1

C: s.push(2)

A: s.pop()

A: 1

C: void

B: r.write(1)

A: r.read()

C: r.write(2)

A: 1

C: void

B: void

B: r.read()

B: 2

A: s.push(x)

B: s.pop()

B: x

A: void

A: s.push(y)

B: s.push(z)

A: void

A: s.pop()

A: y

B: void

2. For each of the histories above, are they sequentially consistent? linearizable? Justify your answer.

3. Is the result of composing several sequentially consistent objects itself always sequentially consistent?
Either justify your answer or give a counterexample.

11. Consensus.

1. Argue why every n-thread with n > 1 consensus protocol has a bivalent initial state.

2. Which of the following are valid implementations wait-free consensus for the given number N of
threads (or an arbitrary number of threads if no N is specified)? Justify your answer.

(i) N = 2

(ii) (iii)

44

3.10 Solutions

5. Mutual Exclusion.

(i) While this implementation does provide mutual exclusion in the sense that no two processes
are in the critical section at the same time, it’s not correct either. We see that the processes
continuously transition from one state to the next, without ever entering the critical section, i.e.
this implementation contains a livelock.

(ii) This time around the implementation doesn’t contain a dead- or livelock. However, we see that
there is a path of state transitions, i.e. an execution, which results in both threads being in the
critical section at the same time. Therefore, this implementation isn’t correct.

(iii) We see that the threads never get stuck in a state and there is no path which doesn’t result in
one of the threads being in the critical section, i.e. the program contains neither a dead- nor a
livelock. In addition, we see that there is no possible sequence of state transitions which results
in both threads being in the critical section at the same time. Therefore, this implementation is
correct. Note that thread B never enters the critical section. This doesn’t mean the implementation
is incorrect, only that it suffers from starvation.

(iv) We see that there is a cycle of state transition which doesn’t result in one of the threads entering
the critical section, i.e. the implementation suffers from livelock. In addition, there is a sequence
of state transitions which results in both threads being in the critical section at the same time. In
summary, this implementation suffers from livelock and doesn’t provide mutual exclusion, i.e. it’s
incorrect.

6. Progress Conditions.

1. We see that this implementation is identical to the lock-free stack implementation from section 3.5
with an added backoff mechanism. Nonetheless, an argumentation is required.

At no point during the execution of the push method does the thread transition into a blocked
state. Therefore, this implementation must be lock-free. This also implies that it’s deadlock-free.
We do realize, however, that a thread isn’t guaranteed to successfully push a node within a finite
amount of time, e.g. when other threads keep popping/pushing nodes just before the thread calls
compareAndSet. Therefore, this implementation isn’t wait-free. In addition, this means that the
method isn’t starvation-free.

2. In a wait-free algorithm, any thread needs to be able to make progress independently of other threads.
An algorithm is wait-free if every operation has a bound on the number of steps the algorithm will
take before the operation completes. Thus, we cannot use locks to implement a wait-free algorithm
(assuming locks are used to protect shared resources), as thread A might obtain the lock, then
become really slow. During this period all other threads that want to obtain the lock are blocked
and cannot make any progress.

3. This implementation suffers from deadlock. Suppose cook A wants to use ingredients I1 and I2 and
cook B wants to use I2 and I1. Both proceed to call getIngredients simultaneously and obtain the
first lock, i.e. cook A holds the lock for I1 and cook B for I2. Neither cook can now make progress
as they are waiting for the other to release the lock.

One possible solution would be to impose an ordering on the ingredients in which their locks must be
obtained. For example, we could enforce that locks must always be obtained in alphabetical order of
the ingredients’ names. Note that this assumes that no two ingredients have the same name, which
is a sensible assumption to make when working in a kitchen.

45

7. Peterson’s.

1. As can be read off the diagram below, this implementation suffers from livelock, e.g. when both
threads reach the while-loop simultaneously. In this case, both threads would observe that the
entryFlag field of the other thread is set and would therefore both decide to enter the while-loop.
Therefore, this implementation is incorrect.

2. • Mutual exclusion: We see that only two threads share a single leaf node. As the Peterson
lock provides mutual exclusion for two threads, the leaf node also provides mutual exclusion. If
two subtrees of a single node both provide mutual exclusion, at most two threads can arrive at
this node. As this node is also a Peterson lock, it provides mutual exclusion for two threads. By
induction, we follow that this generalization of the Peterson’s lock provides mutual exclusion.

• Freedom from deadlock: Similarly, we show inductively that the generalization provides
freedom from deadlock.

• Freedom from starvation: This property is a bit trickier to prove (in fact, the solution from
FS19’s script incorrectly stated that the property didn’t hold, until an attentive student showed
otherwise). We consider trees of size 2n and prove freedom from starvation by induction over
n ∈ N :

– n = 1: We have a tree of size 21, i.e. two threads are attempting to acquire a single lock.
The Peterson Lock is starvation free. Thus, starvation freedom holds for this case.

– IH: Let n > 0 be arbitrary. We assume the binary lock tree of size 2n provides freedom from
starvation.

– Induction Step: We now show that the binary lock tree of size 2(n+1) also provides freedom
from starvation. Assuming 2(n+ 1) threads, we can divide them into 2 groups of 2n threads
and manage them with trees of size 2n.
From IH, we are sure that each thread will acquire the root lock of its subtree at some point.
We now build the final tree by connecting roots of both subtrees to a final root lock R. Note
that due to the setting of the victim field, the two subgroups will alternate in acquiring R.
Since any thread will acquire the root of its subtree, and since the final root lock is starvation
free, we know that any thread will eventually acquire its subtree root, and finally R. This
concludes the proof that the binary lock tree for 2(n + 1) threads is starvation free.

8. Fairness. Suppose n = 3, thread A is stuck at level 0, thread B at level 1 and thread C is at level
2, i.e. in the critical section. C finishes its critical section and releases the lock, thereby setting its level
to 0. Now that there are no more threads at any higher levels, B enters the critical section. B finishes
its critical section and also sets its level to 0. Let’s say both B and C attempt to acquire the lock again,
ending up with victim[1] == C. While A could, in theory, enter the next level, B might be faster and
enter level 1 (and subsequently level 2, i.e. the critical section). Therefore, despite having completed the
doorway section before B started its doorway sections, A was overtaken by B. Thus, the Filter Lock isn’t
fair.

9. Lock Granularity.

1. For a deadlock to occur, the dependency graph must allow for a cyclic dependency. In the fine-
grained locking algorithm, all threads obtain the locks in a set order. In the case of the sorted

46

linked list, for example, all threads acquire locks in increasing order. Therefore, a cyclic dependency
becomes impossible.

Suppose that the add method of the sorted linked list first acquired the lock for curr, then for pred.
If another thread is executing the remove method, it might’ve already acquired the lock for pred,
and be attempting to acquire the lock for curr. Both threads would be waiting for the other to
release the lock. Thus, two threads acquiring locks in different orders can result in a deadlock.

2. Suppose thread A wishes to remove node c. It can happen that the validate method always returns
false, thereby forcing A to always retry and never successfully remove c. A scenario in which
the validate method always returns false would be when other threads are continuously adding
and removing nodes in between c and its predecessor, i.e. the comparison pred.next == curr may
evaluate to false everytime. As long as no other thread removes c, A will continue to try to remove
c.

10. Linearizability and Sequential Consistency.

1. Note that there many possible different solutions. These are only some of them.

(i) (ii)

(iii)

2. (i) We can order this history as

s.push(2)→s.push(1)→s.top():1→s.pop():1→s.push(2)

We see that this ordering preserves the precedence relationships and describes a legal sequential
history. Therefore, this history is linearizable and thereby also sequentially consistent.

(ii) We can order this history as

r.write(1)→r.read():1→r.write(2)→r.read():2

We see that this ordering preserves the precedence relationships and describes a legal sequential
history. Therefore, this history is linearizable and thereby also sequentially consistent.

(iii) We can order this history as

s.push(x)→s.pop():x→s.push(y)→s.pop():y→s.push(z)

We see that this ordering preserves the precedence relationships and describes a legal sequential
history. Therefore, this history is linearizable and thereby also sequentially consistent.

3. No, it’s not. Consider the following execution. It’s easy to see that both q and p are sequentially
consistent, yet the execution as a whole is not sequentially consistent.

11. Consensus.

1. Consider the initial state where A has input 0 and B has input 1. If A finishes the protocol before
B takes a step, then A must decide 0; because a valid consensus protocol must decide some thread’s

47

input, and 0 is the only input it has seen. Symmetrically, if B finishes the protocol before A takes
a step, then B must decide; because it must decide some thread’s input, and 1 is the only input it
has seen. It follows that the initial state where A has input 0 and B has input 1 is bivalent.

2. (i) Suppose two threads A and B simultaneously see i == -1, i.e. they both enter the if-block, and
both have different input values. They will then decide on their own input values, which means
the decide method returns two different values, i.e. it’s not correct.

We could’ve also argued that the volatile keyword simply ensures that reads and writes are
atomic. As we’ve shown that atomic registers can’t solve two-thread consensus, we would’ve
immediately seen that this protocol can’t be correct.

(ii) Note that the decide method is declared as synchronized. We’ve shown that wait-free imple-
mentations can’t use locks, this consensus protocol isn’t wait-free.

(iii) The threads share an AtomicInteger object, initialized to a constant FIRST, distinct from any
thread index. Each thread calls compareAndSet with FIRST as the expected value, and its own
index as the new value. If thread A’s call returns true, then that method call was first in the
linearized order, so A decides its own value. Otherwise, A reads the current AtomicInteger

value, and takes that thread’s input from the proposed[] array.

48

4 Additional Topics

This chapter discusses those topics that didn’t fit in nicely anywhere in the script. If you, as a reader,
find that these topics do fit in nicely elsewhere, possibly with some slight rearrangement of the topics,
feel free to send us an email.

4.1 Sorting Networks

In this chapter we turn our attention to parallel sorting algorithms, which we’ll implement using so-called
sorting networks. We’ll see what common sorting algorithms look like when parallelized and how to prove
or disprove that a sorting network sorts any arbitrary sequence of numbers correctly.

We know that a sorting algorithm, except for some specialized cases, cannot do better than O(n log n) in
the worst case. The obvious next step is to try and break this lower bound by using the multiprocessors
available to us, i.e. by parallelizing sorting algorithms.

First off, we need to define what a sorting network looks like. To
that end, we define the comparator, which swaps two values, such
that the higher value ends up on the bottom wire.

We will now look at what good old Bubble Sort looks like as a
sorting network. The idea of Bubble Sort is that we first find the highest value among the first n values
of the array, then among the first n− 1 values, and so on until we’ve sorted the entire array. As a sorting
network, that looks like this:

From this visual representation it’s pretty obvious which comparators can be executed in parallel. We
”shift” all the comparators as far to the left as possible without having several comparators act on the
same variables simultaneously, as this would result in a data race. This gives us the following sorting
network for parallel Bubble Sort:

Therefore, given an infinite number of processors, parallel Bubble Sort will take 2n − 3. We can
improve this even further to n by rearranging the comparators such that all ”even” resp. all ”odd”
comparators operate in parallel. The algorithm can be improved even further, but that’s far beyond the
scope of this course.

Having seen what a sorting network is we’re now interested in proving that a particular sorting network
will sort any arbitrary sequence of numbers. As there are of course infinitely many such sequences, we
need some easier way of proving such a property. This leads us to the zero-one principle.

Theorem 4.1. If a network with n input lines sorts all possible input sequences of 0s and 1s into a
non-decreasing order, it will sort any arbitrary sequence of n numbers in non-decreasing order.

By using this principle, we can prove the correctness of a given sorting network relatively easily.

49

example 4.1. We’re given the following sorting network:

Tasked with determining whether this sorting network is correct or not, we turn our attention to
the zero-one-principle: We need to iterate over all bit-sequences of length 4 and check whether the
sorting network sorts each one correctly. We see that there are several sequences which are sorted
correctly. However, the network is incorrect, as can be seen by the following sequence:

50

4.2 Transactional Memory

We’ve learned how to correctly implement concurrent programs using locks, but a few problems remain:

• Deadlocks: Threads might attempt to acquire locks in a different order, thereby introducing a
cyclic dependency

• Convoying: A thread might be descheduled while other threads queue up waiting for it to continue

• Priority Inversion: Lower priority threads might hold a resource that a higher priority thread is
waiting for

• Association of data and locks is established by convention, i.e. correct use of the program by
future developers depends on reasonable documentation

• Non-composable: Changing anything about the locking scheme requires changing the whole
program

• Pessimistic by design: Assumes the worst and introduces expensive mutual exclusion as a con-
sequence

We might attempt to resolve some of these problems using compare-and-swap, but, as one might see
when attempting to implement a lock-free sorted linked list, this is often not enough. Double-compare-
and-swap could be enough, but at this point, it’s only a theoretical concept. We, therefore, need some
way of allowing the programmer to easily declare a block of code to be atomic without placing a large
burden on him.

This is where transactional memory comes into play. In transactional memory, we define atomic code
sections called transactions, which guarantee:

1. Atomicity: Changes made by transactions are made visible atomically, i.e. other threads either
observe the initial or final state, but nothing in between. Note that this is done without mutual
exclusion.

2. Isolation: While a transaction is running, effects from other transactions aren’t observed.

It is convenient to say something about how transactions are implemented. Transactions are executed
speculatively : as a transaction executes, it makes tentative changes to objects. If it completes without a
synchronization conflict, it commits (the tentative changes become permanent) or it aborts (the tentative
changes are discarded).

example 4.2. As one might have seen during the lecture, implementing a concurrent bounded pro-
ducer/consumer queue requires a lot of thought (see: Sleeping Barber). However, using transactions
implementing one becomes nearly trivial. Below we’ve depicted the enqueue method of such a
bounded queue.

The method enters the atomic block, and tests whether the buffer is full or not. If so, it calls
retry, which rolls back the enclosing transaction, pauses it, and restarts it when the object’s state
has changed. If not, it enqueues the item, increments the index modular the length of the queue,
and exits the atomic block.

Transactional memory sounds fantastic, but where is it implemented? There have been attempts to
implement transactional memory in hardware and while these implementations can certainly be fast, their
resources are bounded and they can therefore often not handle larger transactions. The implementation
that we will work with is directly in software in parallel programming languages, which allows for greater
flexibility, though achieving good performance might be more challenging.

51

4.2.1 Concurrency Control

To guarantee that a running transaction always sees consistent data, transactional memory implements
a concurrency control (CC) mechanism. The CC will abort a transaction when a conflict occurs. An
example of a conflict is when a transaction that hasn’t yet committed has read a value that is later changed
by a committed transaction. Once a transaction is aborted, it can either be retried automatically (not
necessarily immediately) or the user is notified.

Synchronization conflicts cause transactions to abort, but it’s not always possible to halt a transaction’s
thread immediately after the conflict occurs. Instead, such zombie transactions may continue to run even
after it has become impossible for them to commit. This raises the question: How do we prevent such a
zombie from seeing an inconsistent state?

example 4.3. Such an inconsistent state could arise if an object has two fields x and y, where
each transaction preserves the invariant that x > y. Transaction Z reads y, and sees the value 2.
Transaction A changes x and y to 1 and 0, respectively, and commits. Suppose Z keeps running, i.e.
Z is a zombie, since it will never commit. Z will later see an inconsistent state, when it reads the
value 1 for x.

One might be tempted to say we can ignore this problem, as Z will never commit anyways, i.e. its
updates will be discarded. But unfortunately, life isn’t that easy. Let’s say that after reading x, Z
computes the value for

√
x− y. Under normal circumstances, evaluating this expression shouldn’t

throw an exception. Z has read an inconsistent state and will now throw an exception, which,
depending on the implementation, could crash the program.

As there is no ”practical” way of preventing exceptions in a programming model where invariants such
as x > y cannot be relied on, Transactional memory systems mostly guarantee that all transactions, even
zombies, see consistent states.

Transactional memory organizes mutable state into atomic objects, to which it associates timestamps,
which indicates when the object was last changed by a committed transaction. A transaction will keep
a local read-set and a local write-set, holding all locally read and written objects, respectively. When a
transaction calls read, it will check if the object is in the write-set and use this new version if it is. If not,
it will check if the object’s timestamp is smaller than the transaction’s birthdate. If the object has been
changed by some other transaction after the transaction’s birthdate, it will abort. Otherwise, it’ll add a
new copy of the object to the read-set. When a transaction calls write, it’ll create a copy of the object
in the write-set, if there isn’t one already.

When a transaction attempts to commit, all objects of the read-set and write-set are locked, and the
timestamps of the objects in the read-set are compared to the birthdate of the transaction. If any of the
objects were changed after the transaction started, it’s aborted. Otherwise, all objects in the write-set
are copied back to global memory with their new timestamps. All locks are released and a ”commit” is
returned.

4.2.2 Scala-STM

ScalaSTM is a Java API through which we can access the methods provided by the Scala STM library.
ScalaSTM is a so-called reference-based STM, which means that mutable state, i.e. state which can only
be modified inside a transaction, is put into special variables.

private final Ref.View<Integer> count = STM.newRef(0);

Arrays can be declared as follows:

private TArray.View<E> items = STM.newTArray(capacity);

Everything else is immutable, which means any other variable accessed inside an atomic block must be
declared final.

We can create an atomic block as follows:

STM.atomic(new Runnable(){...}); or STM.atomic(new Callable<T>(){...});

52

Note that the passed Runnable or Callable object must implement the public void run() or the
public T call() method, respectively.

example 4.4. We can now try to implement the enq() method of the bounded queue using ScalaSTM.

First, we need to distinguish between mutable state and immutable state. We see that we modify the
variables count, tail and items. As these variables should indeed only be accessed from within a
transaction, they are part of the mutable state. The method also accepts a parameter x. As we only
read the object and don’t actually try to modify it, we’ll include it in the immutable state. All in
all, our class will look something like this (omitting the other methods for brevity):

53

4.3 Message Passing

We’ve now seen a lot of different ways of dealing with processes concurrently accessing the same data and
we’ve come to one definite conclusion: it’s hard. We might try to avoid sharing state by partitioning the
dataset using the ForkJoin framework, we might use locks to guarantee consistency or we might even
work with transactional memory, but all of these approaches are still difficult to work with, require a lot
of know-how to implement, or both. Taking a step back, we see that the root cause of the problem is the
fact that we have shared mutable state. So, what if we didn’t? This is the core idea of message passing,
namely to have processes run in isolation and only communicate via messages which must be explicitly
received.

4.3.1 Message Passing Interface

The Actor Model is a model for concurrent computation. It uses actors as computational agents which
react to received messages. Received messages are mapped to a set of messages sent to other actors,
a new behaviour and a set of newly created actors. In other words (and quite informal), an actor is a
thread which reacts to received messages and has a local state.

example 4.5. Let’s take a quick break and think about what an actual actor could look like.

A distributor is a type of actor which forwards received messages to a set of actors in a round-robin
fashion. There are two questions that we need to answer to be able to model an actor. What local
state should be kept by the actor and what should the actor do upon receiving a message?

The first question can be answered quickly. We know that we have a set of actors. To guarantee that
the messages are distributed in a round-robin fashion, we store the actors in an array and we keep
an index which indicates the entry in the array which contains the next actor to send a message to.

Now that we know what internal state we’re going to keep, defining the behaviour of the actor upon
receiving a message seems obvious. The message can immediately be forwarded to the actor stored
in the array entry indicated by the stored index. Then, we increment the index modular the array
length. We also need to consider adding control commands which could, for example, allow us to
add or remove actors from the set of stored actors.

Note that in the actor model messages are sent in an asynchronous fashion, i.e. the sender places the
message into the buffer of the receiver and continues execution. In contrast, when the sender sends
synchronous messages, it blocks until the message has been received.

As always, Java has a library for it. MPJ Express is an implementation of the Message Passing Interface
(MPI). It provides us with a message-passing API which we can use to write message-passing programs.

MPI collects processes into groups, where each group can have multiple ”colors” and a group paired with
its color uniquely identifies a communicator. Initially, all processes are collected in the same group and
communicator MPI COMM WORLD. Within each communicator, a process is assigned a unique number to
identify it by, called a rank.

4.3.2 Point-to-Point Communication

The methods to send and receive messages are declared as follows:

Note that in the case of the Recv method it’s not necessary to declare src or tag, instead one could
use MPI ANY SOURCE or MPI ANY TAG. Both methods are declared in the COMM class, i.e. can only be used
in combination with a communicator.

The two methods declared above are so-called blocking operations, which means they won’t return until
the action has been completed locally (i.e. the message has been fully copied to the outgoing buffer, or the

54

message has been fully copied from the incoming buffer). Their non-blocking variants irecv and isend

return immediately. We can also send synchronous messages, i.e. the operation blocks until the message
has been received, using Ssend. Note that the Recv method declared above already is synchronous.

To summarize and complete what we’ve learned up until now, we can write a simple MPI program using
the following six functions:

• MPI.Init(): initialize the MPI library (the first routine called)

• MPI.COMM.Size(): get the size of a communicator COMM

• MPI.COMM.Rank(): get the rank of the calling process in the communicator

• MPI.COMM.Send(): Send a message to another process in the communicator

• MPI.COMM.Recv(): Receive a message from another process in the communicator

• MPI.Finalize(): Clean up all MPI state (last routine called)

example 4.6. Given an array of integers, let’s compute the number of prime factors for each entry.
The resulting array should be present in the process with rank 0 at the end. For simplicity, assume
the array length is divisible by the number of processes.

4.3.3 Group Communication

Up until now, we’ve only considered communication between two specific processes. MPI also supports
communications among groups of processes. In theory, point-to-point communication is enough to write
any program. However, we require group communication for the sake of scalable performance.

MPI.COMM.Reduce() takes an array of input elements on each process and returns an array of output ele-
ments to the specified root process. The output elements contain the reduced result. MPI.COMM.ReduceAll()
does the same thing, only returning the result to all processes instead of a single root process.

MPI.COMM.Scan() takes an array of input elements on each process and returns distinct arrays of
output elements to each process, where the operation is applied iteratively, with the final result array
being returned to the specified root process. The method declaration is identical to the declaration of
Reduce(), but for the method name.

55

Using MPI.COMM.Bcast() one process can broadcast, i.e. send, the same data to all processes in a
communicator. Note that both the receiver and sender processes call the same method.

Finally, we arrive at the MPI.COMM.Scatter() and MPI.COMM.Gather() methods. Scatter() involves
a root process sending data to all processes in a communicator. The main difference to Bcast() is that
Scatter() sends chunks of an array to different processes, while Bcast() sends the entire array to all
processes. Gather() does the exact inverse of Scatter(), in that it takes data from many processes and
gathers them to a single root process. The elements are ordered by the rank of the process from which
they were received.

It’s important to know that the method declarations aren’t necessarily accurate, as there are many
different MPI implementations with variations in parameters and parameter ordering.

56

4.4 Exercises
12. Sorting Networks.

1. How many inputs does one have to check to prove the correctness of a sorting network that takes
integer inputs of length 4, using the 0-1 principle?

2. For each of the following sorting networks, decide whether they’re correct. If not, give a counterex-
ample.

(i)
(ii)

(iii) (iv)

3. Draw the parallel sorting network corresponding to insertion sort for an input sequence of length 5.

13. Software Transactional Memory.

1. Implement the deq method of the CircularBufferSTM<T> class.

2. Implement a bounded stack (i.e. a stack which isn’t allowed to grow past a certain size) using
ScalaSTM.

14. Message Passing.
In the following exercises you will be asked to write MPI programs. To see your solutions in action,
follow the instructions from assignment 14 on the course’s web page (Note: You will have to download
and adapt the assignment code, which includes the MPJ Express library).

1. Adapt the computePrimeFactors method such that the resulting array is present in all processes at
the end. Hint: Look up the Allgather method.

2. Implement a method randAvg that works as follows:

1. Generate a random array of ints on the root process (process 0).

2. Distribute the array among all processes, giving each process an equal-sized chunk. Assume that
the array length is divisible by the number of processes.

3. Each process computes the average of their subset of the numbers.

4. Gather all averages to the root process. The root process then computes the average of these
numbers to get the final average.

As an additional exercise, adapt your code to deal with array lengths which are not divisible by the
number of processes.

3. Given a group of people sitting nicely in a row, we’re going to play waterfall. The first person in
the row thinks of a number, which it whispers into the next person’s ear. The next person then
adds 1 to this number, whispers the new number into the next person’s ear, and so on. Implement
this game, replacing people by processes, only using point-to-point communication. Make sure that
the ”whispering” process only continues execution once it’s sure that the next process has actually
”heard” the secret number.

57

https://spcl.inf.ethz.ch/Teaching/2020-pp/exercises/assignment14.pdf
https://spcl.inf.ethz.ch/Teaching/2020-pp/
https://www.open-mpi.org/doc/v3.0/man3/MPI_Allgather.3.php

4.5 Solutions

12. Sorting Networks.

1. The 0-1 principle states that if the network sorts all possible input sequences of 0s and 1s into a
non-decreasing order, it will sort any arbitrary sequence of input numbers in a non-decreasing order.
As there are 2n possible input sequences of length n of 0s and 1s, one has to check 16 sequences to
ensure correctness of the sorting network.

2. (i) This sorting network is incorrect, as can be seen by the following incorrectly sorted input se-
quence.

(ii) This sorting network is incorrect, as can be seen by the following incorrectly sorted input se-
quence.

(iii) This sorting network is incorrect, as can be seen by the following incorrectly sorted input se-
quence.

(i)
(ii)

(iii)

(iv) We see that this sorting network is a parallelized version of bubble sort. Checking all 16 possible
input sequences yields the expected result: the network is correct.

3. The sequential sorting network corresponding to insertion sort looks as depicted in (i). ”Shifting”
the comparators as far to the left as possible to obtain the maximum amount of parallelism gives
us (ii). Interestingly enough, this sorting netwrk is identical to the sorting network we obtain when
parallelizing bubble sort.

(i) (ii)

13. Software Transactional Memory.

1. We add a head variable which tracks the front of the queue and use a Callable class instead of a
Runnable, as we need to be able to return a result.

58

2. Our implementation is nearly identical to the previously implemented CircularBuffer, only we
don’t need to track a tail and head of the buffer, but only the number of items on the stacks. As we
know the maximum size of the stack in advance, we store the items in an array.

14. Message Passing.

1. We use the Allgather method to make the code more concise.

Given a set of elements distributed across all processes, Allgather will gather all of the elements to
all the processes. In the most basic sense, Allgather is a Gather followed by a Bcast.

59

2. We use the scatter and gather methods to compute the final average efficiently.

3. We use the Ssend and Recv methods to implement the game:

Note that the above code occasionally throws a NullPointerException. If you figure out why,
please send a mail to the mail address listed on the cover page.

60

5 Further Reading

This script tries to summarize the material with complementary exercises and examples. The exercises
are inspired by former exam questions, but also include some other questions which might occur. The
examples are simply meant to re-enforce the reader’s understanding of the topics. For those who would
like to have a look at some additional learning materials, be it out of interest or because the script
wasn’t enough to foster a full understanding of the lecture’s contents, could have a look at the following
materials:

• Lecture Slides/Recordings: The actual lecture materials should not be disregarded. This script
only covers some of the material and is not enough to obtain a proper understanding of the field of
Parallel Programming.

• Official Exercises: The exercises in this script only cover some of the discussed topics and its
solutions were created by students like yourselves. It’s strongly recommended that a student also
goes through the official exercises in detail.

• A Sophomoric Introduction to Shared-Memory Parallelism and Concurrency by Dan Grossman:
This document goes further into detail on and beyond some of the discussed topics. It served as a
strong inspiration for this script’s contents.

• The Art of Multiprocessor Programming by Maurice Herlihy and Nir Shavit: A lot of the concepts
presented during the second part of the course are based on this book. Those who are interested
in the field of Distributed Computing or who would like to see more detailed explanations of topics
such as Linearizability or Consensus will find this book to be very interesting.

• An Introduction to Parallel Algorithms by Joseph Jájá: Some of the concepts and algorithms
presented during the course were taken from this book. While it goes far beyond what is presented
during the course, it might be interesting for extremely motivated students.

• Deadlockempire: Those who find the concepts presented in this script difficult to wrap their heads
around or who have difficulty recognizing race conditions or bad interleavings can build a good
amount of intuition by playing this fun little game. It’s short and could serve as a comfortable
change of pace from regular studies.

6 Changelog

A list of notable changes since the previous version of the script:

• Corrected answer to exercise 7.2: Previous answer incorrectly stated that the lock-tree didn’t provide
freedom from starvation; it does.

• Corrected table on p.21: Column labels were swapped

• Added exercise 14.3.

• Added a Further Reading section

61

https://deadlockempire.github.io/

	Introduction
	How this script works
	Parallelism vs. Concurrency
	Basic Threads
	Thread states

	Bad Interleavings and Data Races
	Other Models

	Parallelism
	Performance
	Speedup
	Amdahl's Law
	Gustafson's Law

	Divide & Conquer
	Task Graphs
	Executor Service
	Fork/Join Framework

	Pipelining
	Exercises
	Solutions

	Concurrency
	Mutual Exclusion
	Progress Conditions
	State Diagrams

	Mutex Implementation
	Peterson Lock
	Filter Lock
	Bakery Lock
	Spin Lock

	Synchronization
	Conditions
	Semaphores
	Barriers

	Lock Granularity
	Coarse-Grained Locking
	Fine-Grained Locking
	Optimistic Locking
	Lazy Locking

	Non-Blocking Algorithms
	Atomic Operations
	ABA-Problem

	Linearizability and Sequential Consistency
	Histories
	Sequential Consistency
	Linearizability

	Consensus
	Memory Models
	Exercises
	Solutions

	Additional Topics
	Sorting Networks
	Transactional Memory
	Concurrency Control
	Scala-STM

	Message Passing
	Message Passing Interface
	Point-to-Point Communication
	Group Communication

	Exercises
	Solutions

	Further Reading
	Changelog

