Informatik II

This section contains the weekly exercises and teaching materials for the lecture Computer Science II. If the downloads are not working, simply click here , log in, and reload the page.

  • Summary

    This summary was written by Daniel Steinhauser and me. No guarantee can be given for correctness and completeness. English version here

    PDF Download

  • Polybox

    Here you'll find my Polybox (Passwort: hier klicken) containing old exams, summaries and notes of many subjects:

    Polybox

  • Google Colab

    Google Colab is a very useful tool for using Jupyter Notebooks online. No installation is required, as everything runs in the cloud.

    Google Colab




Week 1


Einführung Python, Jupyterlab installieren. Allgemeine Tipps und Informationen

  • Einführung
  • Python
  • Jupyter


Week 2


Python Containers (Ranges, Slicing), Exceptions, List & Dict Comprehensions

  • Containers
  • Exceptions
  • List
  • Dict


Week 3


List & Dict Recap, Aliasing, Recursion, Debugging

  • Aliasing
  • Recursion
  • Debugging


    Week 4


    Aliasing Recap, Numpy, Matplotlib, Pandas

    • Numpy
    • Matplotlib
    • Pandas


      Week 5


      Algorithmen, Asymptotic Notation, Laufzeitanalyse, Insertion Sort

      • Big O
      • Asymptotics
      • Insertion Sort


      Week 6


      Recursive Runtime Analysis Trick - No telescoping needed

      • Master Theorem


        Week 7


        Trees, Binary Search Trees, Tree Traversal, Min/Max-Heap

        • Trees
        • BST
        • Heaps


        Week 8


        Ordered & Unordered Datastructures, Hash Table, Quadtrees

        • BBST
        • Hash
        • Quadtree


          Week 9


          Programming Concepts, Functional/Object-Oriented Programming

          • Terminology
          • Lambdas
          • Classes


            Week 10


            Dynamic Programming I

            • Bottom up
            • DP Table
            • Optimal Substructure


              Week 11


              Dynamic Programming II

              • Bottom up
              • DP Table
              • Optimal Substructure


                Week 12


                Machine Learning I

                • Machine Learning
                • Decision Trees
                • Linear Regression


                  Week 13


                  Mock Exam. Slides und Mitschrift (bereitgestellt von Alexander Liemen):

                  • Mock Exam


                  Week 14


                  Machine Learning II

                  • Neural Networks
                  • Hyperparameters
                  • Cross Validation

                    2024 Julian Lotzer